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Summary 

Ecologic U.S. county data suggest negative associations between residential radon 

exposure and lung cancer mortality (LCM)-inconsistent with clearly positive 

associations revealed by occupational data on individual miners, but perhaps 

explained by competing effects of cell killing vs. mutations in alpha-exposed 

bronchial epithelium. To assess the latter possibility, a biologically based 

“cytodynamic 2-stage” (CD2) cancer-risk model was fit to combined 1950-54 age- 

specific person-year data on lung cancer mortality (LCM) in white females of age 40+ 

y in 2,821 U.S. counties (-90% never-smokers), and in 5 cohorts of underground 

miners who never smoked. New estimates of household annual average radon 

exposure in U.S. counties were used, which were found to have a significant 

negative ecologic association with 1950-54 LCM in U.S. white females, adjusted for 

age and all subsets of two among 21 socioeconomic, climatic and other factors 

considered. A good CD2 fit was obtained to the combined residential/miner data, 

using biologically plausible parameter values. Without further optimization, the fit 

also predicted independent inverse dose-rate effects shown (for the first time) to 

occur in nonsmoking miners. Using the same U.S. county-level LCM data, a 

separate study revealed a positive ecologic association between LCM and 

bituminous coal use in the U.S., in agreement with epidemiological data on LCM in 

women in China. The modeling results obtained are consistent with the CD2-based 

hypothesis that residential radon exposure has a nonlinear U-shaped relation to 

LCM risk, and that current linear no-threshold extrapolation models substantially 

overestimate such risk. A U-shaped dose-response corresponds to a CD2-model 

prediction that alpha radiation kills more premalignant cells than it generates at low 

exposure levels, but not at higher levels. To test this hypothesis, groups of Japanese 

medaka (ricefish minnows) were exposed for 10 to 14 weeks to different 

concentrations of aqueous radon; histological and quantitative-morphometry 

analysis of proliferative (premalignant) foci in livers from these fish are currently 

being completed. 
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1. Introduction and Overview 

This report describes the focus, methods and results of three related research 

efforts undertaken during FY97-FY98 comprising LLNL LDRD Project 97-ERD-050. 

These three research efforts concerned: (1) application of a mechanistic, biologically 

based cancer-risk model to apparently contradictory epidemiological data relating 

lung-cancer mortality (LCM) to residential and occupational exposures to radon gas; 

(2) a parallel assessment of whether the same U.S. county-level LCM data used for 

the latter analysis revealed an expected positive association between LCM and 

lifetime use of bituminous coal for residential heating; and (3) an experimental test 

of a biologically based hypothesis that premalignant-cell number (and by 

implication, cancer risk) may have a nonlinear dose-response relation to alpha 

radiation. An introduction and overview of these three efforts is provided below, 

followed by detailed descriptions in Sections 2, 3 and 4 of this report. 

The present LDRD research project stemmed from the observation that a new, 

cytodynamic two-stage (CD2) cancer model developed at LLNL was able to predict 

two apparently contrasting data sets relating lung-cancer mortality (LCM) to radon 

exposure (Bogen, 1997). First, the model predicted a negative dose-response trend 

when previously published U.S. county-level data on mean residential radon 

exposures were compared to data on age-adjusted 1980s LCM in white males (both 

smokers and nonsmokers); second, the model predicted a positive dose-response 

trend when summary information on cumulative occupational radon exposure was 

compared to previously published summary LCM estimates for underground 

miners working on the Colorado Plateau. That both data sets were fit using one set 
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of biologically realistic CD2-parameter values suggested that low-level radon may 

actually reduce lung cancer risk, that is, that the negative ecologic association 

between radon and LCM risk may be biologically plausible, in view of the 

mechanistically realistic two-stage carcinogenesis theory on which the CD2 model is 

based. The CD2 model’s prediction is based on the expectation of competing effects 

on cancer risk due to critical DNA damage vs. cell killing caused by the alpha 

irradiation of bronchial surface epithelium associated with the radioactive decay of 

naturally occurring radon gas. Specifically, in the case of radiation due to exposures 

to the small concentrations of radon gas typically found in U.S. homes, this 

radiation may kill enough premalignant cells to more than offset radiation-induced 

occurrence of new premalignant cells. Higher levels of radiation, however, are 

expected to increase lung-cancer risk by inducing the replacement of killed surface 

cells via proliferation of underlying stem cells, which in turn promotes the clonal 

expansion of any pre-existing “spontaneous” premalignant cells within the 

underlying (and relatively unexposed) stem cells. 

Although biologically plausible, the preliminary CD2 modeling results (Bogen, 

1997) relied entirely on a previously published summary of age-adjusted LCM and 

radon-exposure data, as well as on summary (rather than individual-level) data on 

LCM in Colorado Plateau uranium miners. The preliminary study also estimated 

the amount of cell killing caused by alpha radiation by means of fitting the CD2- 

model to LCM data, rather than using published estimates from in vitro 

experiments involving alpha-exposed human lung cells. 



The primary goal of the present research project, therefore, was to refit the CD2 

model for radon to sets of epidemiological data different than those used initially by 

Bogen (1987)-data that better address the estimation of radon concentrations in 

U.S. homes, as well as potentially confounding effects of smoking on the 

interpretation of radon-LCM associations. Specially, the limitations mentioned 

above were addressed by refitting the CD2 model, conditional on likely alpha 

cytotoxicity, to age-specific LCM data for white females of age 40+ y in 2,821 U.S. 

counties during 1950-54 (-90% of whom never smoked). Entirely new estimates of 

county-specific mean residential radon levels were used, together with age-specific 

(not age-adjusted) LCM data obtained for five cohorts of underground miners who 

never smoked. 

During FY97, we assembled new data on age-specific LCM data and estimated 

corresponding residential radon concentrations in white females of age 40+ y (about 

11% of whom ever smoked) in 2,821 U.S. counties during 1950-54, and in five 

different groups of underground miners (a total of 2,488 miners worldwide) who 

never smoked. The county-level LCM data for white women in the early 195Os, 

previously unavailable in any form, were generated from raw U.S. mortality data 

specifically for this study. We used new estimates of county-specific mean 

residential radon levels for all U.S. counties recently generated by Lawrence 

Berkeley National Laboratory (LBNL). In collaboration with LLNL, LBNL 

performed uncertainty analyses pertaining to the new radon estimates used. A data 

base of corresponding county-level census, climatological, and geophysical data were 

also assembled at LLNL. Person-year data summarizing individual-level exposure 



and LCM information on nonsmoking miners were obtained through the National 

Cancer Institute. 

Research during FY98 began with a trend-analysis of the improved “ecologic”- 

type epidemiological data, followed by a refit of the CD2 model to these data (Bogen, 

1998). The trend analysis revealed that radon levels were found to be significantly 

negatively associated with corresponding county-level LCM rates in U.S. women 

who died in 1950-54 at age 40+ or 60+ years, after adjustment for age and subsets of 

21 other factors considered. A similarity in results obtained for 40+ and 60+ year- 

olds indicates that inter-county differences in smoking are unlikely to explain the 

observed negative associations. A good CD2 fit was obtained to the combined 

residential and occupational data involving ~50 data points relating radon exposure 

to age-specific LCM. This fit also happens also to predict the so-called “inverse dose- 

rate” effect observed previously in underground miners-but now shown-for the 

first time-also to occur in nonsmoking miners in particular (Bogen, 1998). 

Specifically, the CD2 fit obtained in this study predicts independent data to which 

the CD2 model was not fit-a result similar to that found previously using data on 

combined smoking and nonsmoking miners (Bogen, 1997). The results of this study 

are consistent with the hypothesis that residential radon exposure has a nonlinear, 

U-shaped relation to LCM risk, and that current linear extrapolation models may 

substantially overestimate such risk (Bogen, 1998). 

A parallel analysis was also conducted to determine whether, using the same 

county-level data on LCM in white U.S. women during 1950-54 and corresponding 

geophysical/socioeconomic/climatic covariates generated for this study, an expected 
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positive ecologic association could be discerned between LCM and domestic 

exposure to bituminous coal (BC). Ecologic and case-control epidemiological studies 

on populations of women in China have shown a strong link between domestic BC 

exposure and lung cancer, but this association had never been studied in any U.S. 

population. For this purpose, historical county-level data on U.S. domestic BT use 

were obtained, and these data were compared to our corresponding LCM data for all 

counties in which 50% or more of homes used coal for heating. We found that BC 

use was-as expected- significantly positively associated with corresponding 

county-level LCM rates in U.S. women dying in 1950-54 at age 40+ or 60+ years, after 

adjustment for age and many other factors considered (Cullen and Bogen, 1998). 

Experimental work was also conducted as part of this LDRD-sponsored project, 

in collaboration with Drs. M. Okihiro and D. Hinton of the University of California, 

Davis (U.C. Davis), School of Veterinary Medicine. The experimental work 

involved subchronic exposure of three groups of 148 Japanese medaka fish (rice-fish 

minnows) to different aqueous concentrations of radon gas at LLNL. The purpose of 

the study was to examine effects of alpha exposure (arising from the decay of radon, 

which partitions into fish livers at a concentration proportional to that of radon in 

tank water) on the occurrence and growth of premalignant cells (namely, 

enzymatically altered proliferative “foci”) in the livers of young fish exposed 

subchronically to different concentrations of radon gas. A separate experiment 

measured the tissue:water partition coefficient for radon between medaka soft tissue 

and surrounding tank water. Examination of fish livers from the primary study are 

currently being completed at U.C. Davis. 



Detailed descriptions of the three efforts summarized above are provided in 

Sections 2,3 and 4 of this report, respectively, which follow. Each section is divided 

into background, methods, results and (where applicable) discussion subsections. 

Overall conclusions of this project are discussed in Section 5. 

2. Investigation of a Mechanistic Model Relating Radon Exposure to 
Lung-Cancer Risk Reflected in Combined Occupational and U.S. 
Residential Data 

2.1 Background 

Lung cancer mortality (LCM) risk from residential radon exposure is generally 

estimated by linear-no-threshold extrapolation from data on LCM in miners, and 

currently is thought to pose the greatest indoor air-pollution threat in the U.S., 

causing -10% of all lung cancer and -2O-30% of all lung cancer in nonsmokers 

(NRC, 1988,1998; Puskin, 1992). In contrast, ecologic data on county-level U.S. 

residential radon exposures appear negatively associated with corresponding age- 

adjusted LCM rates in male or female U.S. smokers+nonsmokers during the 198Os, 

inconsistent with linear-no-threshold predictions (Cohen, 1995,1997). The observed 

negative association, however, is based on analyses of ecologic (in this case, county- 

level rather than individual-level) data, which are subject to unavoidable potential 

biases (Morgenstern, 1982; Piantadosi, 1994; Piantadosi et al., 1988), such as within- 

county confounding due to smoking and age (Lubin, 1998; Smith et al., 1998). 

In view of controversy regarding lung cancer risks posed by residential radon 

exposure, it is interesting that Cohen’s negative association at residential exposure 



levels, and elevated LCM in miners, were jointly predicted by a mechanistic 

“cytodynamic 2-stage” (CD2) model of lung cancer using biologically plausible 

parameter estimates (Bogen, 1997). The CD2 fit obtained also happened to predict 

“inverse dose-rate” effects seen in miners, i.e., the greater risks observed in miners 

exposed over longer durations conditional on any given level of cumulative 

exposure (see (Lubin et al., 1994,1995a). The CD2 model realistically assumes linear- 

no-threshold dose-response relations for alpha-induced cell killing and critical 

mutations (Bogen, 1997). Previous 2-stage stochastic “MVK’‘-model applications to 

radon presumed that premalignant-cell growth increases monotonically with 

cytotoxic radon dose (Luebeck et al., 1996; Moolgavkar et al., 1993). In contrast, the 

CD2 model may reflect net cytotoxic loss induced in exposed premalignant as well as 

exposed normal cells, and thus predict reduced cancer risk whenever: (i) induced 

cytotoxicity is sufficient to negate a slight net proliferative advantage presumed for 

spontaneous premalignant clones, but (ii) induced mutations yield too few new 

premalignant clones to offset the latter effect on tumor likelihood. 

Although biologically plausible, the previous CD2 modeling results (Bogen, 

1997) relied entirely on Cohen’s ecologic LCM and radon-exposure data, as well as on 

summary (rather than individual-level) data on LCM in Colorado Plateau uranium 

miners in specified ranges of cumulative occupational radon exposure (NRC, 1988). 

The previous CD2 study was also limited by its focus on lifetime rather than age- 

specific LCM risk (since different patterns of age-specific risk over time can yield the 

same pattern of lifetime risk as a function of dose), and by the fact that a parameter 

governing alpha cytotoxic potency was estimated rather than fixed at a likely value. 
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In the present study, each of these limitations was addressed by refitting the CD2 

model, conditional on likely alpha cytotoxicity, to age-specific LCM data for white 

females of age 40+ y in 2,821 U.S. counties during 1950-54 (-90% of whom never 

smoked). Entirely new estimates of county-specific mean residential radon levels 

were used, together with age-specific LCM data obtained for five cohorts of 

underground miners who never smoked. The “inverse dose-rate” effect predicted 

by the new CD2 fit was also compared to LCM vs. dose-rate data pertaining to these 

miners. The partly ecologic design of this study (discussed below) did not remove 

any of the fundamental limitations posed by ecologic data use (noted above). 

Rather, this study was intended to better address the biological plausibility of 

apparent nonlinearity in dose-response for radon-induced lung cancer. 

2.2. Materials and Methods 

Residential Mortality and Smoking Data. Age- and county-specific 1950-54 LCM 

rates were obtained for U.S. white females (WF) aged O-4, 5-9, . . . . 85+ y, excluding 

data for Virginia considered unreliable at the county level for that period (Marsh et 

al., 1996). Analyses excluded data on women ~40 y for whom LCM was quite rare. 

Only -11% (vs. -5%) of WF who died at 40+ (vs. 60+) y in 1950-54 ever smoked, 

based on survey data covering this period (Haenszel and Shimkin, 1956; Mills and 

Porter, 1953). WF data were modeled for age ~80 y only because the general pattern 

of LCM increase (a nearly cubic function of age) did not hold for older women. Such 

an apparent mortality-rate decline among the oldest age groups, which pertains to 

many types of cancer (Armitage and Doll, 1957), may be due to data unreliability 

(Doll and Peto, 1981) and/or population heterogeneity in cancer susceptibility, 
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neither of which are addressed by the CD2 model. 

Rn-Exposure, Socioeconomic and Climatic Data fey U.S. Counties. In addition 

to VA data noted above, data for major retirement states (AZ, CA, FL) were dropped 

in view of survey data indicating a large fraction of lifetime spent near residence at 

time of death in non-retirement states (Cohen, 1992b), expected even more so for 

WF dying in 1950-54. New estimates of annual-average household radon 

concentrations for the remaining 2,821 U.S. counties were used, based on -4,700 

annual-average (long-term) and -50,000 3-day (short-term) radon U.S. 

Environmental Protection Agency national random-survey data. To obtain the new 

estimates, the latter survey data were systematically adjusted and interpolated to 

non-sampled counties using Monte-Carlo and regression methods, which 

incorporated county-level data on climatic and geophysical variates known to 

correlate with residential radon levels (Price, 1997; Price et al., 1998). The geometric 

mean levels were scaled uniformly to corresponding arithmetic means, assuming 

lognormal intra-county distributions with a common approximate geometric 

standard deviation of 2 (Cohen, 1992a; Price, 1999; Price, 1997). 

Among the resulting new county-level estimates of household radon, 1,683 

pertain to counties for which corresponding estimates were made previously using 

ad hoc methods to combine survey data obtained from multiple sources (Cohen, 

1995). The latter and former estimates are fairly well correlated: R2 = 0.733. For 

residential exposures, 1 pCi/liter (=0.037 Bq) of radon in air was assumed to 

correspond to an annual exposure to 0.1935 “working level months” (WLM) of 

effective alpha energy (Puskin, 1992). 



Additionally, 12 types of 1950 demographic/socioeconomic data (USBC, 1953), 5 

typical 1953-1975 climatic measures (Apte et al., 1997), weighted mean county 

elevation using census-tract populations as weights, and county-centroid latitude 

were each binned into county quintiles and were, together with a 3-level dietary Se 

index (Clark et al., 1991) and U.S. region (among 9), included in pairs as factors used 

in addition to age (within 10-y bins) in preliminary analyses of adjusted trend. 

Significant and generally similar negative (ecologic) trends for LCM vs. radon were 

obtained for all 210 sets of the’ 22 adjustment factors used (see Results). Therefore, 

for modeling purposes, county-level age-specific LCM data were adjusted by one 

representative factor (family-income quintile) and then pooled within 6 ranges of 

estimated annual average household radon exposure (corresponding to median 

radon concentrations of <0.394, 0.394-0.787,. 0.787-1.38, 1.38-2.17, 2.17-3.15, and >3.15 

pCi/L). 

Occupational Data. Information from 5 of 6 cohorts for which data on LCM in 

nonsmoking underground miners are available (Lubin et al., 1994,1995a; NRC, 1998) 

was kindly provided by Dr. J. Lubin and coworkers. These person-year (PY) data (n = 

2,488, 44,600.7 PY, 53 cases) were summarized by total LCM, PY and corresponding 

PY-weighted median values of attained age in y (AGE), age at first exposure in y 

(AGE,), calendar year of follow-up (YR), exposure duration in y excluding the 5 y 

prior to attained age (DUR), and cumulative exposure in WLM up to 5 y prior to 

attained age (WLM), for the five WLM bins and three attained-age bins used by 

Lubin et al., (1994, pp. 84-5), and for DUR ranges of O-7,8-15, and 216 y. 

Cancer Risk Model. The CD2 model (Figure 1) was used with the changes 

10 



Figure 1. Cytodynamic 2-stage (CD2) model of bronchial carcinogenesis 
(Bogen, 1997), incorporating the “MVK” stochastic 2-stage framework (dashed 
box; see Moolgavkar, 1983) whereby normal epithelial stem cells (S) may each 
with probability m 1 per cell division give rise to a premalignant cell (P), 
which may proliferate clonally and with probability WZ~ give rise to a 
malignant cell (M). The CD2 model adds a reservoir of unexposed cells (R) 
that may play a alpha-enhanced role in replacing S-cells lost at rate k, to 
become reproductively dead cells (D). R-cells may progress to premalignant 
(Q) and malignant (M) cells via a process parallel to yet independent from the 
S+P+M process. Rates of birth (b) and death/differentiation (d) are specified 
for each cell type, fR is the ratio R/S under normal conditions. 

11 



noted. This model adapts the “MVK” 2-stage mechanistic framework, in which 

transition of normal (S) to premalignant (P) cells and of P-cells to malignant cells 

(M) is modeled as a doubly stochastic filtered Poisson process (Moolgavkar, 1983; 

Moolgavkar et al., 1993). As applied to radon, the CD2 model additionally assumes: 

(i) alpha-induced transition from S to a pool of reproductively dead cells (D), (ii) 

replacement of S-cells partly by virtually unexposed cells (R) via a Verhulst 

feedback-inhibition process (where fx denotes the ratio R/S under noncytotoxic 

conditions), and (iii) similarly unexposed premalignant (Q) cells derived from R- 

cells and subject to malignant transformation via a process similar to and 

independent from the S-+P+M process. Mathematical details are given in the 

Appendix. In terms of notation and relations previously described (Bogen, 1997), 

new assumptions used for the present study were: (1) dose rate (E) in cGy y-’ to 

surface (secretory) cells in lobar/segmental bronchi was estimated to be 3.3 and 4.4 

cGy WLM-l for residents and miners, respectively (NRC, 1991); (2) excess relative risk 

was modeled as sxE (unitless) for S+P and P+M transitions; (3) k, was modeled as 

E/D, with D, taken to be the inverse-variance-weighted mean (35 cGy) of published 

D, values for alpha-induced killing of human lung cells in vitro (Raju et al., 1993; 

Simmons et al., 1996); (4) d, was modeled as b, - g[l + c(b&l-l)]; (5) R--+Q and Q-+M 

transitions were presumed to occur at a background rate per cell division of wxm 

(vs. the rate m assumed for S+P and P+M transitions); and (6) the target-cell 

turnover rate b was assumed to have the plausible value 4 ye’ (Bogen, 1997). Other 

CD2 parameters were assigned biologically plausible values previously used (Bogen, 
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1997) (see Appendix 1 at the end of this report). 

Data Analysis. The CD2 model with 6 estimated parameters (m , w , fx, g, c, and 

s) described was fit to 8 x 6 = 48 income-adjusted age- and exposure-specific 

residential LCM rates, plus 3 x 5 = 15 age- and WLM-bin-specific occupational LCM 

rates, assuming corresponding Poisson errors that were estimated by standard 

methods (Chiang, 1984). This model was evaluated analytically (see Appendix l), 

and parameter and corresponding standard error (SE) values were obtained by 

inverse-variance weighted chi-square minimization (Press et al., 1992) (i.e., by a 

method that is approximately maximum-likelihood, particularly with respect to 

residential LCM rates based on so many cases that assumed Poisson errors were 

virtually Gaussian). Outlying data were assessed by corresponding (approximate) F- 

tests. 

The resulting fit was also compared graphically (i.e., and not fit) to estimates 

and 95% confidence-limit (CL) values for: (i) relative risk (RR) of LCM adjusted for 

age and income in residential WF, based on U.S. county-level mortality data 

discussed above; (ii) age-adjusted RR of LCM in residential WF as predicted by 

“preferred” BEIR VI risk-extrapolation models (NRC, 1998), (iii) RR of LCM reported 

by Lubin et al. (1994, p.88) as a function of WLM in 6 cohorts of never-smoking 

underground miners adjusted for age, cohort, and previous occupational exposures; 

and (iv) RR of LCM in 5 of the latter miner cohorts (using data discussed above) 

adjusted for AGE and YR, as three functions of DUR corresponding to the WLM 

ranges: 1400, >400-800, and >800-1600 WLM. The latter comparison involved RRs 

estimated de n ov o from data on 5 of 6 miner cohorts because previous studies 
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(Lubin et al., 1995a; Lubin et al., 1994; NRC, 1998) did not examine RR as a function 

of DUR for miners who never smoked. A >1600-WLM exposure category was not 

included in this comparison because CLs on the estimated (elevated) RRs were too 

large for a comparison to CD2 predictions to be meaningful. 

For the graphical comparisons described, internally standardized RR implied by 

the CD2 fit (or predicted by BEIR VI models) were defined as the corresponding 

weighted mean of predicted age-specific RRs, using LCM numerators (i.e., inverse 

coefficients of variation) of age-specific 1950-54 rates of WF LCM as common age- 

specific weights. Comparisons between the occupational data and corresponding 

CD2 model predictions for LCM as functions of (i) WLM and (ii) DUR also made use 

of the corresponding assumptions: (i) DUR = 9.62[1- exp(-0.00358xWLM)l 

(nonlinear least-squares fit to the 15 data subsets, R2 = 0.808), and (ii) (AGEJAGE) = 

0.708 - 0.0122 x DUR (linear least-squares fit to 27 similar subsets of the occupational 

data classified within three ranges of AGE, DUR and WLM cited above (R’ = 0.812, p 

= 1.5 x 10-l’). Numerical maximum-likelihood methods were used to obtain all RR 

and CL values, as well as to obtain adjusted chi-square values for trend in the trend 

analyses mentioned above (Breslow and Day, 1987a). Also used in trend analyses 

were standardized relative-risk slopes, each defined as (adjusted LCM 

slope)/(unadjusted LCM intercept), with the latter slope and intercept estimated 

using standard methods (Fleiss, 1981). All calculations were performed using 

Mathematics 3.0@ software (Wolfram, 1996). 
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2.3. Results 

A separate analysis (summarized in Appendix 2) addressed potential effects of 

predicted intra-county variation in radon concentration on the likelihood of 

misclassification pertaining to the six nominal ranges of estimated annual average 

household radon exposure (corresponding to median radon concentrations of 

<0.394,0.394-0.787,0.787-1.38,1.38-2.17,2.17-3.15, and >3.15 pCi/L) that were used for 

the present study. This analysis showed that, despite considerable predicted intra- 

county variability in radon concentration, only -1% and -5% of houses in lowest 

and 2nd lowest radon bins, respectively, are predicted to have been misclassified 

from the highest 2 bins; and only -2% and -7% of houses in highest and 2nd highest 

radon bins, respectively, are predicted to have been misclassified from the lowest 2 

bins (Price, 1999). 

Table 1 summarizes results obtained from a trend analysis of LCM vs. radon- 

concentration bin adjusted for age and one among 21 factors considered indicate a 

consistent, significantly negative association between radon level and LCM, for all 

women as well as older women. This was also found in a similar analysis of trend 

adjusted for age and 210 combinations of two among the 21 other county-level 

factors considered, summarized in Figure 2. From the latter analysis, the median 

(and upper 2-tailed 95% CL) of p-values for (negative) trend obtained was 7.5 x lo-’ 

(0.0032) for all women (40+ y) and 4.5 x 10e7 (0.0052) for older women (60+ y). The 

corresponding median (and 95% CL) of relative-risk slopes was found to be -1.6 

(-0.84, -2.2) L Bq“ for all women (40+ y), vs. -1.5 (-0.92, -2.1) L Bq-l for older women 

(60+ y). Thus, statistically significant and generally similar negative (ecologic) trends 
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Table 1. Trend in the relative risk (RR) of lung cancer mortality (LCM) among women in 
U.S. counties from 1950-54 as a function of county mean residential radon level, adjusted for 
various factors.* 

Adjusted for 
age, and 

Age only 
Agr. work 
Density 
Elevation,, 
Fem. work 
Heating IDD 
High school 
Income 
Latitude 
Migration 
Poor 
Precip.-h 
Region 
Rich 
Rural 
School 
Selenium 
Temp. Jan 
Temp. Jul 
Uneduc. 
Urban 
Wind 

Age 2 40 y Age 2 60 y 

RR Slope** CV** -Log,, P RR Slope** CV** -wo P 
x (-100) (k%) for X2W”d x (-100) (k%) for x*tm 

7.5 26 15. 7.2 25 11. 
6.5 21 11. 8.1 19 11. 
6.6 21 12. 6.2 21 8.4 
3.3 44 2.8 3.9 37 3.1 
6.8 21 13. 6.4 21 8.8 
5.8 26 8.1 6.6 21 9.4 
8.3 18 >16. 5.9 25 6.5 
7.3 21 14. 7.7 18 12. 
7.9 21 15. 7.6 20 11. 
6.2 24 IO. 6.8 21 9.6 
7.5 19 15. 6.2 24 8.2 
8.4 18 >I 6. 7.0 20 IO. 
8.3 19 15. 7.9 19 13. 
6.9 20 13. 6.5 20 8.8 
6.6 20 12. 6.5 20 9.0 
8.1 19 >16. 7.7 19 12. 
5.2 28 7.8 5.2 28 5.9 
5.2 32 6.2 5.0 33 4.6 
7.3 19 13. 7.0 19 9.4 
5.1 31 6.3 4.9 32 4.6 
6.5 21 12. 6.2 20 8.5 
8.0 18 >I 6. 7.6 18 12. 
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Footnotes for Table 1 

“LCM was compared among 6 groups of counties classified by mean residential 

radon level (RL), after adjusting for age and the listed factors, which were classified 

into U.S.-county quintiles, except as otherwise noted. Agric. work = % employed in 

agriculture, Density = population density (# km-‘), Elevation,, = population- 

weighted elevation (m), Fem. work = % females in total labor force, Heating IDD = 

heating infiltration degree-days (“F-d), High school = % completed high school or 

more, Income = median family income ($), Migration = # persons living in a 

different county or abroad in 1945 vs. 1950, Poor = % with income ~$2000, Precip.-h = 

mean precipitation (h d-l), Region = location among 9 U.S. divisions, Rich = % with 

income > $5000, Rural/Urban = % rural-farm/urban population, School = median 

schooling completed (y), Selenium = index (0, 1, or 2) of relative exposure to dietary 

selenium based on foliage Se content, Temp. Jan/Jul = mean daily temperature for 

Jan/ Jul (“F), U ne d ucated = % who completed grade ~5, Wind = mean daily wind 

speed (m s-l). 

**The standardized RR slope (Badj) was calculated as B,dj = b,dj/a, where b,, = the 

adjusted slope for linear LCM trend, and a = the unadjusted LCM intercept; CV = 

lOO%x(standard deviation of B,dj)/B,dj. 
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Figure 2. Adjusted relative-risk slopes and corresponding p-values for 
adjusted trend in 210 analyses adjusting for age and two additional variates 
(among those listed in Table 1) are shown for U.S. females (a) 40+, and (b) 60+, 
years of age. Cumulative distributions of normalized adjusted slope (Badj) are 
surrounded by corresponding lower and upper 01 SD) bounds; corresponding 
p-values plotted as (-logI p)-l for corresponding adjusted tests of trend are 
overlaid. Slope values refer to linear trend in relative-risk of lung cancer 
mortality (LCM) in U.S. females during 1950-54, for county data pooled within 
6 ranges of estimated annual average household radon exposure, with slope 
calculated as B,dj = b,+/a where b,,j = 
unadj usted LCM intercept. 

the adjusted LCM slope and a = the 
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for LCM vs. radon were observed using either data on all women (40+ y) or data 

pertaining only to older women (60+ y). 

An adequate CD2 fit was obtained to the combined (n = 63) age-specific 

residential/miner LCM data (x2 = 73.8, df=57, p = 0.066), which was improved 

significantly (F2,55 = 9.72, p = 0.00024) by dropping one outlying data point from each 

data subset (2 = 54.6, df=55, p = 0.49). Parameter estimates (+lOO% x SE/estimate) 

corresponding to the latter CD2 fit were: mb = 0.76 x IOe8 y-l (+ I2%), w = 3.7 (+ 27%), 

fR = 0.063 (k 50%) , g = 0.0893 y-l (+ 4.9%), c = 0.35 (& 65%), and s = 0.11 y cGy-l (+ 160%). 

Figure 3 shows the corresponding CD2 fit obtained to income-adjusted age-specific 

data on LCM in U.S. WF in 1950-54 for two of the six county-mean household radon 

levels considered. RR values predicted by this CD2 fit under residential-exposure 

assumptions are compared in Figure 4a to: (i) corresponding RR estimates that 

summarize LCM in U.S. WF in 1950-54 as a function of county-mean residential 

radon level, and (ii) corresponding RR values predicted by “preferred” BEIR VI 

models (NRC, 1998). Figure 4b shows how, under mining-exposure assumptions 

reflecting the actual experience of nonsmoking miners, the CD2-model predicts RRs 

consistent with those summarizing the age-specific miner data used. Figure 5 shows 

how, under similar assumptions concerning nonsmoking miners, the CD2-model 

predicts RRs consistent with “inverse dose-rate” effects on RR apparent in miners, 

even though the model was not fit to any data concerning inverse dose-rate effects. 

2.4. Discussion 

The similarity in trend-analysis results obtained using age-specific 1950-54 data 
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Figure 3. Age-specific rates of lung cancer mortality (LCM) in U.S. white 
females during 1950-54 adjusted for income, pertaining to counties within 2 
different ranges of county-mean residential radon concentration. The LCM 
data are compared to age-specific LCM rates predicted by the 6-parameter CD2 
model fit jointly to: (i) the data points shown, (ii) similar U.S. county-level 
data for 4 other ranges of county-mean residential radon, and (iii) age-specific 
LCM rates for a total of 2,488 miners who never smoked (goodness of fit to 
combined data: 2 = 54.6, df=55, p = 0.49). 
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Figure 4. Relative risk (RR) of increased lung cancer mortality (LCM) in (a) 
U.S. white females (WF) during 1950-54, adjusted for age and income, vs. 
county-mean residential radon concentration within 6 ranges; and (b) 2,488 
nonsmoking underground miners adjusted for age, cohort, and previous 
occupational exposures, vs. cumulative underground mining exposure as 
reported by Lubin et al. (1994). Each set of RR estimates was based on internal 
comparisons to data (solid points) corresponding to the lowest exposure 
group (RR = 1, dashed line), and is compared to RRs predicted by the 6- 
parameter CD2 model fit to 61 age-specific LCM rates for W F and nonsmoking 
miners (see Figure 3) corresponding to the RR estimates shown. Plot (a) also 
shows RR for female nonsmokers predicted by the “preferred” (12- and 13- 
parameter) BEIR VI linear-extrapolation models: BEIR VIc = age-exposure- 
concentration model, BEIR VId = age-exposure-duration model (NRC, 1998). 
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Figure 5. Relative risk (RR) of increased lung cancer mortality (LCM) 
adjusted for age and year of observation in nonsmoking underground miners 
within different categories of cumulative exposure, vs. mining-exposure 
duration; based on internal comparison to LCM in miners exposed for ~8 y 
(solid points on dashed line indicating RR = 1). The RR estimates are 
compared to values predicted by the 6-parameter CD2 model fit-not to the 
data points shown here- but rather to 61 age-specific LCM rates for 1950-54 
WF and nonsmoking miners (see Figure 2). 
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on Lcm in U.S. women of age 40+ vs. 60+, despite far less smoking among the older 

women, indicates that inter-county confounding by smoking is unlikely to explain 

the apparent negative trend in age-specific data on LCM vs. residential radon. As 

noted (Introduction), these negative trends may be due entirely or in part to a 

confounding artifact due to within-county correlations unaffected by the various 

county-level adjustments made in this study (Lubin, 1998; Pershagen, 1998; Smith et 

al., 1998). The results above indicate, however, that these negative trends are also 

consistent with a biologically realistic six-parameter CD2 model that also predicts 

high-dose as well as dose-rate effects in miners. In particular, CD2 estimates 

obtained for bm and bmw (-10-s y-l) are consistent with in vim somatic hpgrt-gene- 

mutation rates estimated for human T-lymphocytes, which in turn have been used 

to estimate somatic human-oncogene mutation rates (King et al., 1994; Mendelsohn, 

1990; Robinson et al., 1994; Trainor et al., 1984). The CD2 estimate for fx (-6%) is 

consistent with relevant histological and microdosimetric variabilities, and/or with 

a possible source of unexposed bronchial-epithelium stem cells within underlying 

submucosal-gland ciliated ducts-see the detailed discussion and references cited in 

Appendix 1 of Bogen (1997). 

In conclusion, the results of this study support the biological plausibility of the 

hypothesis long argued by Cohen (Cohen, 1995), that LCM is not increased by 

exposure to radon at residential levels. More specifically, they are consistent with a 

mechanistically based U-shaped (or “hermetic”) dose-response pattern for radon’s 

effect on lung-cancer risk, but by no means prove that this pattern either is the case 

or is as large as suggested by the U.S. ecologic data considered. The U-shaped CD2 fit 
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obtained in this study differs sharply from linear-no-threshold models, such as the 

12- or 13-parameter “BEIR VI” (NRC, 1998) models currently used to extrapolate 

lung-cancer risks for low-level radon exposures (Figure 4). The present study thus 

indicates that some consideration of fundamental model uncertainty ought to play a 

role in risk management for residential radon (Bogen and Layton, 1998). 

Furthermore, the results obtained pose testable mechanistic hypotheses 

concerning the effect of subchronic or chronic exposure to relatively cytotoxic 

genotoxins, such as alpha radiation, on growth kinetics of premalignant foci. After 

chronic administration of chemical carcinogens, development of focal cytotoxic 

resistance in proliferative foci has been attributed to clonal selection for mutations 

that decrease chemical uptake, decrease metabolic activation, increase deactivation, 

increase excretion, increase DNA repair, etc. (Emmelot and Scherer, 1980; Last et al., 

1987). Even so, chronic chemical carcinogen exposures have been shown to reduce 

tumor yields significantly under some conditions (Kociba, 1978; Witschi et al., 1997). 

In the case of radon, one underlying CD2 hypothesis is that premalignant foci are no 

more resistant than surrounding normal cells to chronic alpha-induced cell death. 

Focal resistance is not expected in the case of alpha radiation, because a fraction of 

the damage (e.g., multiple chromosome breaks) induced is predictably misrepaired 

to states that are at least reproductively lethal. 

Another key CD2 hypothesis is that cell proliferation induced to compensate 

for normal-cell loss from low-level alpha exposure is not accompanied by the same 

amount of (or any) increased proliferation in surface-epithelial (P-cell) premalignant 

foci. At low levels of induced target-cell killing, the CD2 model used posits that: (i) 
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this low level of chronic cell killing is too low to induce fully compensatory cell 

proliferation, and/or (ii) focal cells (already assumed to have an elevated rate of 

proliferation-see Appendix) are either less responsive or totally unresponsive to 

mitogenic signals that induce regenerative proliferation in surrounding normal 

cells. The second of these assumptions is supported by the observation that 

magnitudes of relatively increased mitotic rates in foci compared to normal rat liver 

cells are characteristic of particular focal types (Zerban et al., 1994). Experiments that 

address this issue directly, which have yet to be done, may thus provide data critical 

to improved risk prediction for low-level exposures to those carcinogens, like alpha 

radiation, expected to be similarly cytotoxic to both normal and premalignant cells. 

Improved risk extrapolation for residential radon exposures will, of course, 

ultimately rely on large, well designed case-control and cohort studies. Previous 

non-ecologic epidemiological studies have yielded mixed results, generally 

consistent with low-dose linearity, but also insufficiently powerful and not well 

designed to test specific nonlinear hypotheses (Bogen, 1997; Lubin et al., 1995b; NRC, 

1998; Samet, 1989; Stidley and Samet, 1993). Better predictions will require detailed 

exposure histories and lung-cancer data concerning tens of thousands of people 

(Lubin et al., 199513). A coordinated effort to generate a database of large magnitude 

is now underway in Europe, Canada and the U.S. Initial results indicate a relative- 

risk pattern that is nearly linear for some data sets (e.g., those focusing on areas of 

relatively high residential exposure-(Darby et al., 1998; Pershagen, 1998)), but flat or 

possibly U-shaped for other data sets (e.g., those focusing on combined low and high 

residential-exposure areas, or on nonsmokers-(Alavanja et al., 1994; Letourneau et 
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al., 1994; Pershagen, 1998; Wichmann et al., 1998)). The degree of nonlinearity 

predicted by the CD2 model is a sensitive function of the ratio of cytotoxic to 

mutagenic potencies assumed (Bogen, 1997). However, the key assumption behind 

this predicted nonlinearity- alpha-induced killing of premalignant cells in 

bronchial-surface epithelium-is highly likely. Some (albeit perhaps negligible) 

nonlinearity in lung-cancer risk due to residential radon is thus predicted by 

current, mechanistically based multistage cancer theory. If properly designed, future 

analyses of expanded sets of residential case-control data will bound the magnitude 

and significance of such nonlinearity. 
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3. Historical U.S. Residential Fuel Use and Female Lung Cancer Mortality 
[coauthored by J. Cullen and Dr. K.T. Bogen] 

3.1 Background 

U.S. female lung cancer mortality increased dramatically during the 20th century. 

Cigarette smoking patterns, movement into industrial occupations and outdoor air 

pollution have been associated with this increase (Chen et al., 1992). However, despite 

early century female domestication, residential air pollution has not been thoroughly 

examined in relation to these historical mortality patterns, 

Increasing attention has focused on the relation between residential fuel 

combustion and lung disease, particularly in China where cooking and heating with coal 

and wood is still a common practice (Band et al., 1990; Chapman et al., 1988; Chen et al., 

1990; He et al., 1991; Liu et al., 1991,1993; Mumford et al., 1987,1989; Qing et al., 1993; Xu et 

al., 1986,1989), as summarized in Table 2. Ecological studies have shown exceptionally 

high female lung cancer mortality rates in Northern China despite an estimated 0.2% 

female smoking prevalence (Band et al., 1990; Chapman et al., 1988; Chen et al., 1992; He 

et al., 1991; Liu et al., 1991; Mumford et al., 1987,1989; Xu et al., 1989). Case-control studies 

have also shown a strong association between residential coal use and female lung cancer 

mortality in Northern China (Chen et al., 1990; Gao et al., 1987; Liu et al., 1993; Liu et al., 

1989,199l). Other putative risk factors, such as passive smoking and occupation, do not 

account for the exceptionally high lung cancer mortality among these women (Band et 

al., 1990; Chapman et al., 1988; Mumford et al., 1987,1989). Historically, occupational 

studies of coal mining and lung cancer have been inconclusive, showing both elevated 

and reduced disease rates associated with mining (Ames et al., 1983; Armstrong et al., 

1979; Bertrand et al., 1987; Chovil, 1979; Cockcroft and Andersson, 1987; Costello et al., 
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Table 2. Association of residential coal use with increased lung cancer risk in Chinese regions, 

Study Study size Exposure Risk p value 
design” (CasesKontr.) Exposure type level measure” Est. (or CI)* Reference 

Ecol. 11 Smoky coal use (%) 0% PRR 1.0 I Chen et al. 
Communes 50% 15.4 NP 1990 

100% 217 

cc (1249/l 345) Use vs. non-use (y) of: R%dj Morabia et al. 
central gas 30+ vs. 0 0.8 NS 1992 
coal stove 50+ vs. 0 1.2 NS 

open coal bed 20+ vs. 0 2.3 co.05 
coal bed 50+ vs. 0 3.4 co.05 

cc (11 O/426) Female cooking (y) 30-44 vs. c30 OR 7.23 co.05 Wu-Williams 
>44 vs. c30 8.43 NS et al. 1993 

cc (139/l 39) Smoky coal use Yes/No Wdj 7.53 (3.31-l 7.2) Xu et al. 1989 

Net tons smoky coal c3 vs. 0 8.24 (2.33-29.2) 
used per y >3 vs. 0 7.53 (3.03-I 8.7) 

<O.OOl (trend) 

cs 117,035 PY Males: Coal vs. gas use - 1.44 NP Gao et al. 
1.45 NP 1987 

“PRR = prevalence rate ratio, RR = relative risk, OR = odds ratio, CC = case control, CS = cross-sectional, Ecol. = 

ecological, LCM = lung cancer mortality. RR+ = RR adjusted for age, education, smoking; ORa, = OR adjusted for age, 

menstrual-cycle duration, menopause, age, family chronic-bronchitis/LC history; CI-confidence interval. 

28 



1974; Dalal et al., 1991; Gustavsson et al., 1988; IARC, 1997; Levin et al., 1988; Lyon et al., 

1981; Meijers et al., 1988,1991; Minowa et al., 1988; Morabia et al., 1992; Une et al., 1995; 

Wu-Williams et al., 1993). However, lack of data on individual smoking behavior may 

have obscured results in some of these studies (Lyon et al., 1981; Meijers et al., 1988; 

Minowa et al., 1988). Importantly, a lower cancer potency of coal-mine dust versus coal 

particles of incomplete combustion (PIC) might be expected based on the greater 

concentrations of mutagenic compounds in the former (IARC, 1997). 

Of three Northern Chinese residential fuel types, only “smoky” coal has been 

linked to increased lung cancer mortality; neither “smokeless” coal nor wood fuel were 

associated with any significant effect (Band et al., 1990; Chapman et al., 1988; de Koning 

and Smith, 1984; Mumford et al., 1987,1989,1990). Smoky coal is comparable to U.S. 

medium-volatile bituminous coal of low sulfur content, whereas smokeless coal is more 

similar to hard coal such as lignite or anthracite (Mumford et al., 1987,1989). Despite 

heavy soot residue left by smoky coal, its use in China may have persisted due to its 

ability to rapidly generate large amounts of heat, as measured in British thermal units 

(Btu). PIC from smoky or bituminous coal are associated with elevated lung cancer 

mortality in laboratory animals (Liang et al., 1988; Pott and Stober, 1983). When burned, 

smoky coal emits higher levels of sub-micron organic PIC versus wood or smokeless coal, 

which are mutagenic in Ames Salmonella bioassays (Mumford et al., 1987,199O). Lung 

cancer has been induced in mice exposed to coal smoke and skin cancer development has 

occurred in mice treated topically with filtered organic coal extracts.(Mumford et al., 1990) 

Polycyclic aromatic hydrocarbon (PAH) components of PIG, such as benzo(a)pyrene, 

dibenzo(a,Z)pyrene, and 7,12-dimethylbenz(a)anthracene are effective experimental and 
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suspected human carcinogens (Chuang et al., 1992; Cupitt et al., 1994; de Koning and 

Smith, 1984; Higginbotham et al., 1993; Mumford et al., 1989). Elevated PAH-DNA 

adducts and urinary PAH levels have been associated with residential smoky coal (He et 

al., 1991; Mumford et al., 1993,1995). 

Cooking and heating fuels are among sources of residential air pollution. Until 

the 1950’s, coal and wood were the predominant fuels burned in U.S. homes (USBC, 

1953). Perhaps due to steady replacement by natural gas and electricity, few studies have 

examined the public health impact of coal and wood combustion in U.S. homes 

(Lambert, 1997; Samet et al., 1987,1988; USBC, 1953). Indoor wood smoke has been linked 

to several respiratory illnesses, while indoor coal smoke has been measured in U.S. 

homes but not studied in association with human health (Yocom et al., 1971; Cooper, 

1980; de Koning and Smith, 1984; Dennis et al., 1996; Honicky et al., 1985; Liang et al., 1988; 

Marbury, 1991; Mumford et al., 1989; Robin et al., 1996; Tuthill, 1984). 

This ecological analysis examined the relation of U.S. domestic bituminous coal 

consumption to age-specific lung cancer mortality (LCM) in U.S. white females dying 

during 1950-54, the great majority of whom never smoked (particularly those 2 60 years 

old). A comparative analysis of these rates within different age ranges (40+ vs. 60+) 

provided a way to assess the potential confounding effect of inter-county differences in 

(rather low) smoking prevalence on any association observed between LCM and coal use, 

as explained below. Socio-demographic, climatic, and geophysical covariates were also 

examined. The present study is the first nationwide evaluation of a relationship between 

coal use and lung cancer in the U.S. 
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3.2. Materials and Methods 

County-level LCM data for the states AL and HI were unavailable, in the case of 

VA included unreliable mortality rates, and for the major retirement states (CA, AZ, and 

FL) corresponded to a relatively low percent (~70%) of lifetime residence within 25 miles 

of that at the time of death compared to other states (Cohen, 1992b; Marsh et al., 1996). 

Therefore, a total of 2,821 counties were considered in this analysis, including those in 

AK, AZ, CA, FL, HI and VA (as in Section 2). Because socioeconomic status and other 

demographic covariates may influence indoor air pollution exposure (Lebowitz, 1983), 

adjustment was performed on several demographic factors for which U.S. county-level 

data could be obtained as classified below. 

Lung Cancer Mortality Data. U.S. county-level mortality rates (deaths per person- 

year) were obtained for lung cancer (bronchus, trachea, -I- lung; ICDA 162-163, 6th 

Revision) during 1950-54 in white females by 5-year age intervals (Marsh et al., 1996). 

Due to the rarity of female lung cancer at that time, particularly in younger age groups, 

data on women under age 40 were excluded and age-specific data were combined into lo- 

year age intervals (40-49,50-59,60-69, 70-79, SO+). 

Analyses were carried out for all women (40+ years) and also for women aged 60+. 

The latter restriction addressed potential (inter-county) confounding due to cigarette 

smoking insofar as smoking prevalence in 1950-54 among U.S. white females aged 60+ 

vs. 40+ was approximately 5% vs. approximately ll%, respectively, and women aged 60+ 

smoked fewer cigarettes and started smoking at a later age than women aged 40+ 

(Garfinkel, 1981; Haenszel and Shimkin, 1956; Haenszel et al., 1956). Based on these 

historical smoking data, excess risk for elevated LCM in white women dying at age 40+ 
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(vs. 60+) in 1950-54 was estimated to be 0.74 (vs. 0.16) for women aged 40+ (vs. 60+) 

compared to expected LCM risks for never-smoking women who died during this period. 

This estimated 4- to 5-fold difference in excess risk indicates that any ecological 

association observed between indoor BC use and female LCM due solely to inter-county 

confounding by smoking should be greatly reduced in analyses involving older women 

(aged 60+) compared to those involving all women considered (aged 40+). 

Coal Data. The number and percent of homes using coal for (central + non- 

central) heating in 1940 were obtained from U.S. census data (USBC, 1943). Because 

Mumford demonstrated that “smoky” or bituminous coal, and not anthracite or 

“smokeless” coal, is associated with increased female LCM, our study focused on 

domestic BC consumption per se within counties that used mainly coal for heating 

(Mumford et al., 1987,1989). County-level data for the year 1918 on domestic per capita 

net tons of BC consumption (fuel utilization in housing units/residences, apartment 

buildings, and small local businesses) were obtained from a detailed map published by 

the U.S. Fuel Administration (Lesher, 1919). Similarly detailed data could not be 

obtained for other years. Binned quartiles of 1918 BC consumption were used as an index 

of residential coal exposure to coal smoke in our analysis. The LCM data used were based 

on deaths among all residents of a county, but not all persons living in U.S. counties 

burned coal. We therefore focused specifically on counties in which a substantial fraction 

of homes burned coal as fuel by restricting the analysis to counties in which 275% of 

homes used coal for heating. 

Females dying between 1950-54 reached ages 29-33 (the approximate midpoint of 

their lives) by 1918, which is the year of the coal-use data considered in the present 
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analysis. To examine the potential impact any changes in net tons BC consumed 

(NTBCP) per capita between 1918 and 1940, county-level consumption for nine U.S. 

regions in 1918 was compared to corresponding 1940 US. regional summary data on 

average tons of BC consumed per dwelling unit (TBCD) (Bituminous Coal Institute, 

1948). To convert from TBCD to NTBCP, regional 1940 populations were divided by 

dwelling units per region in 1940, weighted by the fraction of 1940/1950 regional 

populations, with removal of states not considered (as discussed). The 1918 NTBCP data 

were also weighted as a fraction of the 1950 population for direct comparison to 1940 

TBCD. Regions were subsequently categorized into two groups based on whether BC use 

in 1940 was < or was 21 NTBCP; the two groups had a mean (+l SDM) BC use level of 0.89 

(kO.036) and 1.9 (kO.053) NTBCP, respectively. This BC-use category was used as an 

additional adjustment variable in our analysis, to examine the potential effect of different 

patterns of change in BC use subsequent to 1918, at least at a regional level. 

Demographic Data. Census data on the following 1950 county-level socio- 

demographic variables were obtained: total population, population density, U.S. region 

(among nine regions considered), urban population, rural-farm population, educational 

level (total years), income (median family income), migration (number of persons living 

in different county or abroad in 1949 vs. 1950), females in the workforce (%), and persons 

employed in agriculture (%); income grouped as rich (% 2 $5,000 income) vs. poor (% < 

$2,000 income); and educational level dichotomized as uneducated (% < grade 5) vs. 

highly educated (% 2 high school) (USBC, 1953). These socio-demographic variables were 

evaluated as corresponding county quintile values, using 1950 county populations as 

weights. 
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Geophysical and Nutrient Data. Respiratory exposure to radon is associated with 

increased lung cancer risk in animals and underground miners, and so was included as 

an adjustment variable (Bogen, 1997,1998; NRC, 1988). Clinical trials and prospective 

studies have indicated that dietary selenium intake may be protective against cancer 

development at specific sites, including the lung (Blot et al., 1993; van den Brandt et al., 

1993). Additionally, climatic factors which might influence indoor coal smoke 

concentration were included for adjustment. Geophysical variates considered at the U.S. 

county-level were: annual average residential radon estimates; a 3-level index of dietary 

selenium exposure based on corresponding data on selenium content in local foliage; and 

five 1953-75 “typical” climatic measures, including daily hours of precipitation, 

January/July temperatures, wind speed, and heating infiltration degree days or “heating 

IDD” which correlates with energy use for home heating (Apte et al., 1997; Clark et al., 

1991; Price et al., 1998). Residential radon estimates used for this purpose were derived 

from county-specific U.S. Environmental Protection Agency survey data, adjusted for 

additional geophysical and climatic factors using Monte Carlo and regression techniques 

(Price et al., 1998). 

Statistical Analysis. Adjusted relative risk (RR) estimates and confidence intervals 

were calculated using maximum-likelihood estimation, and corresponding adjusted chi- 

square tests for trend were performed (Breslow and Day, 198710). RR estimates were 

computed using a standardized slope, B,, (in units of inverse per capita net tons of BC 

used), where B,, = b,dj/a, and where b,dj (the adjusted LCM slope) and a (the unadjusted 

LCM intercept) were estimated by standard methods (Fleiss, 1981). Standard deviation 
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(SD) and coefficient of variation (CV) estimates for B were obtained assuming 

approximate lognormality of b,dj and a. 

Socio-demographic and geophysical variables were used for adjustment in 

combination with age separately for each age range (40+ vs. 60+), creating: 20 2-variate 

analyses (involving age with or without one other variable), and 190 3-variate analyses 

(involving age and two other variables) (Table 3). Fisher’s chi-square test was used to 

determine the overall significance of p-values for adjusted trend obtained for each set of 

multiple tests conducted (Fisher, 1973). All statistical calculations were performed using 

Mathematics 3.0 software (Wolfram, 1996). 

3.3 Results 

Approximately 640 (22.7%) of the 2,821 U.S. counties in 1940 were characterized by 

75% or more homes heated by coal. Women aged 40+ in “high coal-using” counties 

experienced an estimated 5,807 female LC deaths within 46,120,369 person-years (PY) of 

observation versus 4,059 LC deaths among 16,887,421 PY of observation for women aged 

60-t-. Across all counties for both age groups, a total of 14,296 LC deaths occurred in 

113,999,028 PY during the period of interest. Quartiles of BC consumption across high 

coal-using counties were 0.03, 0.45, 1.4, and 2.4 net tons, from lowest to highest quartile, 

respectively. 

Adjusted slope (Badj) and trend-test p-values for the two-variate analyses (age and 

one other variate) are summarized in Table 2 for all women (aged 40+) and for older 

women (aged 60+). All adjustment combinations yielded significant statistics indicating a 

positive trend, and the estimated slopes for all women (aged 40+) were similarly 

distributed to those for older women (aged 60+). 
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Table 3. Trend in Relative risk (RR) of 1950-54 female lung cancer mortality (LCM) 
among U.S. counties in which 275% of homes used coal for heating.* 

Adjusted for 
age and: 

Age 2 40 y 

Slope** CV** -LogI p 
(x 100) (*%I for x2trend 

Slope** CV** -Log,, 1 
(x 100) (*%) for x,*~,,, 

Age only 9.8 38 7.2 9.2 27 4.2 
Agriculture 9.3 28 6.5 9.9 27 5.0 
Density 9.4 26 6.6 9.9 23 5.0 
Female work 7.9 31 4.6 9.2 27 4.2 
Heating IDD 11.0 30 8.5 11.0 31 6.0 
High school 11 .o 30 6.3 10.0 31 4.2 
Income 7.6 32 4.2 8.1 30 3.3 
Migration 11.0 25 9.3 12.0 25 6.8 
Poor 8.3 28 5.0 8.9 27 4.0 
PrecipHr 9.3 33 6.2 10.0 32 5.1 
Region 17.0 20 12 16.0 22 7.7 
Rich 6.9 38 3.4 7.7 35 2.9 
Rn 7.2 35 3.6 7.7 34 2.8 
Rural 8.6 29 5.7 9.4 27 4.5 
School 8.4 40 4.9 9.4 38 4.1 
SeBin 10.0 31 7.7 11.0 32 5.6 
TempJan 11.0 27 a.7 11.0 26 6.4 
TempJul 9.3 31 6.3 10.0 30 5.0 
Uneduc 9.0 30 5.9 10.0 26 5.0 
Urban 7.8 32 4.5 8.7 30 3.8 
Wind 7.3 44 3.4 6.5 53 2.0 

I  
. ,- -- I  

“LCM was compared among 4 groups ot counties classitied by annual per capita BC 
use (net tons), after adjusting for the following factors (each classified into U.S.- 
county quintiles unless specified otherwise): AgWork = % employed in agriculture, 
Density = persons/km2, FemWork = % females in total labor force, Heating IDD = 
heating infiltration degree-days, High school = % completed high school or more, 
Income = median family income, Migration = # persons who lived in different 
county or abroad in 1949 vs. 1950, Poor = % with income < $2000, PrecipHr = daily 
hours of precipitation, Region = location within 9 U.S. divisions, Rich = % with 
income > $5000, Rural = rural farm population, School = median school years 
completed, SeBin = index (0, 1, or 2) of relative exposure to dietary selenium, 
TempJan/TempJul = daily mean temperature for indicated month, Uneducated = % 
who completed < grade 5, Urban = urban population, Wind = mean daily wind 
speed. 

Age 2 60 y 

*“Slope = normalized RR slope (B) = (factor-adjusted slope of LCM as a linear 
function of BC, by person-year-weighted regression)/(unadjusted intercept of 
corresponding linear fit); CV = ~OO%X(SD,~,~, /Slope); see Materials and Methods. 

36 



Results of the three-variate analyses (age and two other variates) for all women 

(aged 40+) and older women (aged 60+) are summarized in Figure 6 by corresponding 

cumulative distributions of B,dj, plotted together with corresponding lower and upper (fl 

SD) bounds on Bad1 and (-log inverse) p-values for adjusted tests of trend. The p-values 

distributions in Figure 6 indicate that significant trends were obtained for almost all 

three-variate adjustment combinations. Comparing highest vs. lowest BC-use quartile 

among women aged 40+, simultaneous adjustment for wind and region with age showed 

the most significant LCM/BC-use relationship for three-variate analyses, with RR,dj = 

1.68 (1.28,2.21) and p <lo-’ for adjusted trend while simultaneous adjustment for region 

and age from two-variate analyses resulted in the most significant LCM/BC-use 

association, with RR = 1.54 (1.25, 1.9) and p <lo-i3 for adjusted trend. Similar findings for 

women aged 60+ were obtained for these variable combinations. The percent of p-values 

20.05 was 3% for women aged 40+ and 6% for women aged 60-t, i.e. no greater than might 

be expected by chance. Fisher x2 values for the overall significance of the sets of 190 p- 

values obtained for three-variate analyses involving 40+ and 60+ women were highly 

significant (x2 = 4490.5 and p-0 for 40+, x2 = 3363.7 and p=O for 60+). 

Adjustment for BC use in 1918 vs. 1940 produced similarly significant results when 

two- and three-variate analyses were repeated. 

3.4 Discussion 

Overall, BC consumption in 1918 was shown to be significantly associated with 

female LCM in 1950-54 for counties of high coal use after statistical adjustment for 

numerous combinations of variates (Table 3, Figure 6). Importantly, this significant 

positive LCM-BC association was observed in two female age groups, 40+ and 60+, whose 
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Figure 6. Adjusted relative-risk slopes and corresponding p-values for 
adjusted trend in 190 analyses adjusting for age and two additional variates, 
(among those listed in Table 3) are shown for U.S. females (a) 40+, and (b) 60+, 
years of age. Cumulative distributions of normalized adjusted slope (Badj) are 
surrounded by corresponding lower and upper (fl SD) bounds; corresponding 
p-values 1 tt d p o e as (-logI p)-’ for adjusted tests of trend are overlaid. Slope 
values refer to relative risk of lung cancer mortality (LCM) based on 
comparisons of highest (>2.4 net tons) vs. lowest (SO.03 net tons) county 
quartiles of bituminous coal use, with slope calculated as B,dj = b,dj/a where 
b,,i = the adjusted LCM slope and a = the unadjusted LCM intercept. 
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1955 smoking prevalence (approximately 11% and 5%) differed markedly (Haenszel and 

Shimkin, 1956; Haenszel et al., 1956), which is consistent with the hypothesis that 

confounding by smoking is unlikely to explain the observed association. 

Inherent limitations of the ecological study design (Greenland, 1992; Greenland 

and Morgenstern, 1989; Greenland and Robins, 1994; Piantadosi, 1994; Piantadosi et al., 

1988) are countered by several unique features of the present study. The wide 

investigative scope achieved from evaluating 640 U.S. counties of high coal use was a 

major strength. Cigarette smoking, the most significant risk factor for lung cancer, was 

addressed by performing a restricted analysis with women aged 60+, who smoked 

roughly half as much as all women combined (40+). While intra-county associations 

between low-prevalence smoking and coal use cannot be ruled out as explaining the 

observed association between BC use and female LCM, the consistency of the observed 

effect among women aged 40+ vs. 60+ indicates that the BC-LCM association is not likely 

due to inter-county confounding by cigarette smoking. 

Because of concern over the constancy of BC use during the lifetime of women 

dying in 1950-54, the LCM-BC relationship was compared regionally in 1940 vs. 1918. 

Similar findings after adjustment for regional BC use patterns of 1940 indicate that this 

relationship does not appear to be attributable to changes in geographic patterns of BC use 

between 1918 and 1940. 

Burning rate of fuel, type of stove, and coal rank have all been shown to impact 

the amount of indoor pollution generated (McCrillis and Burnet, 1990; Mumford et al., 

1989; Mumford et al., 1987). While burning rate and stove-type data were not available, 

our focus on consumption of bituminous coal was intended to address this matter. 
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Additionally, insofar as home ventilation is an important aspect of indoor air pollution, 

heating IDD was used to examine any potential effect of home energy use that would 

typically correlate with reduced home ventilation and greater indoor air pollutant 

concentration. 

4. Effect of Radon Exposure on Liver Foci in Japanese Medaka: An 
Experimental Test of CD2-Model Predictions 

4.1 Background 

Experimental work conducted as part of this LDRD-sponsored project 

culminated a collaboration with Mark Okihiro, D.V.M., Ph.D., and Professor David 

Hinton at the University of California, Davis (U.C. Davis), School of Veterinary 

Medicine. These experimental work involved subchronic exposure of three groups 

of 148 Japanese medaka fish (rice-fish minnows) to different aqueous concentrations 

of radon gas. The purpose of the study was to examine effects of alpha exposure 

(arising from the decay of radon, which partitions into fish livers at a concentration 

proportional to that of radon in tank water) on the occurrence and growth of 

premalignant cells (namely, enzymatically altered proliferative “foci”) in the livers 

of young fish exposed subchronically to different concentrations of radon gas. 

Specifically, the study was conducted to test the CD2-based hypothesis that alpha 

exposure should increase the frequency but retard the growth of liver foci. Fish 

liver foci were studied because: many fish can be exposed and studied economically, 

proliferative foci in liver (as opposed to most other tissues) can be identified and 
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examined by staining techniques, the response of liver foci in Japanese medaka to 

chemical carcinogens has been studied for decades. 

4.2 Materials and Methods 

Three weeks after the medaka were hatched at U.C. Davis, the fish were all 

“initiated” to increase the naturally low, spontaneous occurrence of liver foci in 

these fish to larger, more easily detected frequencies. Initiation was done by 

exposing them for 1 hour to a 500-ppm concentration of the direct-acting mutagen 

and liver carcinogen, diethylnitrosamine (DEN). Four weeks later at LLNL, the fish 

were separated into three specially modified 80-liter fish tanks: a control tank, and 

two tanks with water containing elevated concentrations of radon gas, derived from 

a lo-mCi radium source through which 100 to 500 mL/min of dry air was directed. 

To maintain different radon concentrations in tank water, air containing a 

background level, a low, or a higher radon concentration was sparged continuously 

into the corresponding tank water throughout the exposure period. Dried room air 

was used to dilute radon-enriched air from the radium source. All tanks were 

located within a single hood, illuminated from above with three 30-inch Vita- 

Glow’ fluorescent lamps operated using a 12-h light/dark cycle. 

Each tank was sealed on top using air-tight fittings, and kept filled with between 

70 and 72 liters of purified, reconstituted water (Recon) optimized for medaka 

growth, which was maintained at 25 f 1 “C and pH = 7.6. Each tank included a 

thermostat, and one biofilter drawing air from the tank headspace; after the sixth 

week of exposure identical submerged power filters and sintered-glass bacterial 
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matrices were added to each tank to enhance biofiltration efficiency. From 10 to 20% 

of the water from each tank was replaced with fresh Recon once per week. Sparge 

and biofilter air were circulated (with a combined flow rate of -70 mL/min) through 

each tank by an air-flow control unit adjacent to the hood containing the tanks; the 

unit also directed samples of sparge and biofilter air from each tank to two 

corresponding RD-200 monitors that measured corresponding radon+daughter 

activity in air sampled for 30 min from each source on a continually rotating basis. 

A tank-air outflow of -30 mL/min, equal to the sparge air inflow, was released from 

a small port on each tank into the hood. Tank water was sampled periodically by 

gas-tight syringe through a small port to monitor pH and radon, nitrite, nitrate, 

oxygen, and ammonia concentrations. Fish were manually fed pre-weighed 

amounts (totaling -5% of body weight per day) of fine-grade UCD-prepared medaka 

food, dispensed 2 to 4 times/day. 

After 10 weeks of exposure, 40 fish were harvested from each tank, and all 

remaining fish were sacrificed 4 weeks later. After sacrifice, each fish was weighed 

and its liver was excised, fixed in formalin, and prepared for sectioning into slides 

for histological examination and quantitative morphometry of liver foci. 

A separate experiment was conducted after the 14-week radon exposure to 

measure the equilibrium tissue:water partition coefficient for radon gas partitioned 

between tank water and soft (relatively rapidly perfused) medaka tissue. In this 

experiment, 111 fish were maintained for 48 h in a large nylon net within the sealed 

high-concentration tank containing an approximate mean radon concentration of 

40,000 pCi/L over that period. Over a period of -1 min, these netted fish were then 
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removed from the tank, drained, blotted dry on tissue paper, rinsed in a 10-L bucket 

of Recon, and (still contained within a small portion of netting cut from the original 

netting) finally placed into a 4-L Nalgene jar pre-filled with 3.5 L of Recon. The jar 

was then sealed with a screw cap including fittings allowing 500 mL/min of dry air 

to be bubbled into the bottom of the jar, with air collected at the top directed into one 

of the RD-200 counters mentioned above for a period of 1.5 h, after which the fish 

were euthanized and weighed. 

Counts from jar air measured over a 60-min period were compared to counts 

measured in one subsequent and two previous control experiments, before and after 

each of which the 4-L jar was thoroughly rinsed with Recon and the air lines were 

purged until no counts above background were detected. The two previous control 

experiments involved measuring counts for 60 min after direct injection of 10 mL of 

water from the tank from which the 111 fish (weighing a total of 19.9 g) were 

removed shortly thereafter. In the subsequent control experiment, the same small 

piece of netting used to place the 111 fish into the 4-L jar was placed back into the 

sealed tank from which the fish were taken, allowed to re-equilibrate with radon in 

tank water for 15 min, and then placed into the pre-filled jar for measuring released 

radon as before. Counts measured from the jar containing fish plus netting, less 

those measured from the jar containing just the netting, were compared to those 

measured after injection of 10 mL of tank water to determine the amount of radon 

removed from the fish compared with that contained in tank water. 
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4.3 Results 

From the separate experiment conducted after the 14-week radon exposure, was 

determined that, at equilibrium, radon is about 1.5- to 3-fold more concentrated in 

rapidly perfused medaka tissue than in surrounding tank water. About 16% of all 

the fish exposed over 10 to 14 weeks died prior to sacrifice; mortalities occurred 

more often in the low-concentration tank, compared to the control and high- 

concentration tanks. The examination of fish livers is currently being completed at 

U.C. Davis. 

5. Conclusions 

In conclusion, modeling results from this LDRD study support the biological 

plausibility of the hypothesis that LCM is not increased by exposure to radon at 

residential levels. They are consistent with a mechanistically based U-shaped (or 

“hormesis”) dose-response pattern for radon’s effect on lung-cancer risk, but by no 

means prove that this pattern either is the case or is as large as suggested by the U.S. 

ecologic data considered. The U-shaped CD2 fit obtained as described in Section 2 

differs sharply from linear-no-threshold models currently used to extrapolate lung- 

cancer risks for low-level radon exposures. The analysis described in Section 3 

supports the hypothesis that ecologic data meaningfully contributed to the CD2-fit to 

residential and occupational radon-vs.-LCM data described in Section 2, insofar as 

the same ecologic data reveal a significant positive association between lifetime 
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bituminous (smoky) coal use and LCM in U.S. women during 1950-54, in agreement 

with both ecologic and case-control studies on LCM vs. coal use among women in 

China. The present study thus indicates that some consideration of fundamental 

model uncertainty ought to play a more important role in risk management for 

residential radon (Bogen and Layton, 1998). Furthermore, the results obtained pose 

testable mechanistic hypotheses concerning the effect of subchronic or chronic 

exposure to relatively cytotoxic genotoxins, such as alpha radiation, on growth 

kinetics of premalignant foci. One such test, described in Section 4 above, is being 

completed as part of this study. 
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Appendix 1 
Mathematical Details of the CD2 Model 

Mathematical details of the CD2 model applied to radon are presented below, 

proceding from the summary description and notation in Figure 1 and Methods. 

(Note: dependence of variables on time t is occasionally suppressed for 

convenience.) Rates by and dT (y-l) denote mean birth and death/differentiation 

rates, respectively, for cell type T = S, D, P, R, or Q. It was assumed that (bp/bs) = 

@Q/~R> = n = 10, based on values of -5 to 20 reported in studies comparing growth 

kinetics in proliferative foci and surrounding normal tissues (Barrass et al., 1993; 

Dragan et al., 1994; Rotstein et al., 1986; Zerban et al., 1994). For non-cytotoxic 

conditions, it was assumed that: the rate g (y-l) governs net growth of P- and Q-cell 

foci (i.e., bp-dp = bQ-dQ = g), bs = b(l-fR), bR = ds = b, and dR << b (i.e., dR = 0), where b- 

1 (y) is the mean R-cell turnover time. The rate b = 4 y-l was assumed for normal 

human segmental bronchial epithelium, consistent with the range of values 

measured in normal tracheobronchial epithelial cells of rats and hamsters 

(Bertalanffy, 1968; Boren and Paradise, 1978; Kauffman, 1980; Reid and Jones, 1983) 

and values used for purposes of human radon dosimetry (Fisher et al., 1991; 

Hofmann et al., 1991). 

The rate k, (y”) of induced reproductive death was modeled as E/D,, with D, 

taken to be the inverse-variance-weighted mean (35 cGy) of published D, values for 

alpha-induced killing of human lung cells in vitro (Raju et al., 1993; Simmons et al., 

1996). Mutation rates mT (y-l) were modeled as bTmi(l+sE) or bTmi’(l+sE), where the 

corresponding mean background mutation rates per cell division, mi and mi’ (i=l 

for T= S or R, i=2 for T= P or Q, prime only for T= R or Q), were estimated in terms 

of (unitless) parameters m and w under assumptions that m 1 = m2 = m and m,’ = 

m2’ = w m. Alpha-induced interphase (as opposed to reproductive) cell death was 

not modeled explicitly. Tumors were assumed to be lethal at time t+z conditional 
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on M(t) 2 1, where tumor latency z was assumed to be 5 y, consistent with the range 

of values used in previous radon-related studies (Darby et al., 1995; Hornung and 

Meinhardt, 1987; Moolgavkar et al., 1993; NRC, 1988,1998; Whittemore and 

McMillan, 1983). Cytodynamic relations among S, D, and R cells were assumed to be 

governed by a deterministic, Verhulst feedback-inhibition submodel that specifies 

how bR increases to ensure that S(t)+D(t) tends toward S(0) = So, under the 

assumptions that D cells are “recognized” by R cells as normal S cells, and that R(t) = 

R(0) = Ra = fRs() for all t (i.e., that the increases in bR to offset R-cell losses are 

virtually “instantaneous” on the time scale considered). It was assumed that SO = 

lo8 cells, based on estimates of basal vs. secretory cell populations in human lung 

(Harley, 1988; Mercer et al., 1991); 

Equations (l)-(14) below give the corresponding birth and death rates specifying 

the CD2 model applied to radon in this study: 

bs = b(l-fR) 

ds = b + k, 

bD = 0 (by definition) 

dD = b(2-fR) 

bR = b + G(t) 

bp = nbs 

dp = bp - Cg + kr) 

bQ = nb 

dQ = bQ - g[l + c(b,b-’ - l)] , 

where G(t) is defined by the Verhulst relations: 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 

(9) 

G(t) = GW + ail- W(t)+Wl/Sd~ (10) 
dS(t)/dt = (b + G(t))fRSo + (bs-ds)S(t) (11) 

dD(t)/dt = M(t) + (b-dD>D(t> - (12) 

The constant c (unitless) in Eq. (9) reflects an assumption that (unexposed basal) 

premalignant stem (Q) cells respond to regenerative mitogenic signals via a death- 
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rate decrease proportional to the increase in R-cell birth rate over its normal value, 

b. The parameter a (y-l) in Eq. (10) governs the speed of S-cell replacement, and was 

assumed to be sufficiently large to justify the assumption used that S(t) I E = S(m), 

where for sequential exposures Ei during time intervals {ti-l,ti}, S(t) is interpreted as 

Si(t-ti-1) such that Si(O) = Si-l(a) and So(=)=S a, and where analogous relations were 

presumed for D. Consequently, after substituting Eqs. (l-4) into Eqs. (10-12) and 

some algebra, it follows that 

G(-) = [y[b-#b = ['i',lbd-fR~l'(b-~)]-b (13) 

The CD2 model described was evaluated using the analytic solution to the 2- 

stage stochastic (MVK) model with piecewise-constant parameters, which during 

each ith interval (using his notation) involves corresponding rates of mean 

occurrence (vi), birth (pi), death (Si), and mutation (pi) of premalignant cells (Zheng, 

1995). Dropping the i-subscript, the latter three rates correspond directly to the rates 

bp, dp, and mp, or to the rates bQ, aQ, and mQ, as defined above. The expressions 

used for v in the S+P-+M and R+Q--+M processes were f&mP and fR&mQ, 

respectively. The corresponding process-specific hazard functions, Hs(t) and HR(t), 

were presumed independent and each calculated as described by Zheng (1995). The 

latter independence implies that the age-specific hazard function for the 6-parameter 

CD2 model described is simply H(t) = Hs(t) + HR(t). From the fact that a single 

MVK-type hazard function with at most three piecewise-constant parameters is 

identifiable (Heidenreich et al., 1997), it follows directly that the 6-parameter CD2 

model described is also identifiable in theory. 

[Note: References cited in this Appendix appear above in the Reference Section 

of this report.] 
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1 Introduction 

A long-standing goal of the radon research community has been to produce maps that 

somehow identify areas of elevated radon (e.g. Gundersen et al. 1993, Price et al. 1997, 

Cohen 1994, Alexander et al. 1993), where “elevated radon” is often somewhat vaguely 

defined but may include the arithmetic mean long-term indoor concentration in the area, 

or the geometric mean, or the fraction of homes exceeding some reference level such as 

the EPA’s recommended action level of 4 picocuries per liter (pCi/L). The intent of such 

maps is often to identify areas for increased radon education, monitoring, and remediation, 

but sometimes radon maps (or, more generally, estimated radon distributions by area) are 

used for other purposes such as epidemiological modeling (Bogen 1997, Lubin and Steindorf 

1995, Cohen 1995) or for analyzing costs and benefits of radon monitoring strategies (Lin 

et al, 1999). 

Indoor radon measurements within counties are nearly lognormally distributed, so most 

quantitative predictions of radon distributions attempt to determine the geometric mean 

(GM) and geometric standard deviation (GSD) of measurements by county. Observed GSDs 

tend not to be highly variable compared to the GMs, and variables that are predictive of 

GMs have not been found to help predict GSDs; consequently, it is common to assume that 

county GSDs are identical, or that they only vary slightly. However, there is a possibility 

that some counties have unusually elevated GSDs, and thus have a large fraction of high- 

radon homes even if their GM concentrations are fairly low. Knowledge of the distribution 

of county GSDs is thus necessary in order to determine the effectiveness of mean-based 
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radon mapping methods. 

Furthermore, predicted radon-related cancer rates in nonlinear radiation-risk models 

depend not only on arithmetic mean concentrations, but also on the distribution of radon 

exposures across the population (Bogen 1997), so variation in GSDs is a potentially im- 

portant complicating factor in fitting such models. For example, a model that attempts 

to predict, county lung cancer death rates as a function of indoor radon concentration, and 

that assumes that the entire county population is exposed to the county’s arithmetic mean 

concentration, will substantially misclassify many or most individuals in the county. An 

example is presented in Appendix I, where we consider the number of households whose 

radon concentration falls into various concentration range bins, as a function of the county 

arithmetic mean, for several values of county GSD. 

A complication in characterizing the radon distribution within counties is that most 

radon measurements are short-term measurements, usually made on the lowest level of 

the home (often an unoccupied basement). Such measurements are known as “screening” 

measurements, and they are both biased and “noisy” compared to annual-average living-area 
.’ 

measurements. The bias can be removed, given presently available short- and long-term 
# 

data (White et al. 1990, Price and Nero 1996), but the existing data are not adequate 

for precisely estimating the excess variability of short-term measurements. Moreover, such !;: : 
excess variability probably varies by season and location. In short, there is no known way 

‘. ,.I., 
to use the variability of screening measurements within areas (such as counties) to estimate 

the variability of long-term living-area concentrations. 

However, there is one high-quality database of long-term living-area radon measurements 

that is suitable for quantifying the within-county variation of indoor radon concentrations: 

the National Residential Radon Survey (NRRS) made radon measurements in about 5700 

homes selected through a stratified random sampling scheme that sampled a total of 125 

counties across the U.S. (Lucas et al. 1992). In this paper, we present the results from fitting 

these data with a statistical model that estimates both the within-county and within-census- 

block variation of indoor radon concentrations, and also quantifies the extent to which the 

variability itself varies among counties and census blocks. 



2 The Data 

The NRRS protocol used an alpha-track radon detector on every occupied level of the house, 

with a measurement time of 1 year, to calculate a “household mean” radon concentration- 

the arithmetic mean of the radon measurements on all occupied levels. Weighting by oc- 

cupancy time was not used, so that if 80% of the inhabitants’ time was spent on one level 

of the home, while only 20% was spent on another level, the household mean measurement 

does not reflect this disparity. Still, this is the only large-scale random-sample survey that 

monitored on every occupied level of the home, and as such it is certainly the best survey 

for estimating parameters related to actual indoor exposures. 

The survey also recorded a large variety of features of each home, such as the number 

of appliances vented to the outdoors, the type of heating and cooling system, and so on. 

Although such information has been used to produce predictive radon models, we do not 

use it in the present work, which is involved in characterizing radon distributions rather 

than in trying to locate high- or low-radon areas. 

An important complicating factor in the survey is that a stratification scheme was used 

to oversample expected high-radon areas; furthermore, population weighting was used so 

that highly populous counties were more likely to be selected than sparsely populated ones. 

Sampling weights were calculated as part of the original survey. 

2.1 Components of variation 

The NRRS selected 125 counties through a stratified random sampling scheme. Within each 

county, exactly eight census blocks were selected (also via a stratified sampling scheme), 

and a small number of homes was selected in each block. The survey attempted to monitor 

every one of those homes. 

The stratification scheme must be considered when estimating the GSDs and their un- 

certainties, since there is the possibility of missing very variable (or very uniform) census 

blocks within a county, and since only eight census blocks are sampled within each county 

so that inclusion of one census block with very high (or low) GM may also affect the es- 

timated GSD. To get a feel for the magnitude of the components of variability, we plot 

observed radon measurements in Figure 1 for eight of the counties in EPA’s Region III (the 

mid-Atlantic states). Each thin vertical column contains the measurements from one census 
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block, and the blocks are divided into their counties by the vertical bars. Measurements 

are plotted on a log scale using a number identifying the county (using the ‘primary sam- 

pling unit’ identifier from the NRRS data). Note that some census blocks are more variable 

than others within the same county (particularly noticeable in the rightmost county). This 

illustrates that some census blocks are more variable than others (in log space). 

In county 26 (sixth from the left) most of the census blocks have about the same mean 

radon level, whereas in county 25 (seventh from the left) there appears to be substantial 

variation. This illustrates that some counties have higher between-census-block variation 

than others (in log space). 

It is apparent, given the large variation within census blocks and the small number of 

observations in each block, that the parameters associated with any individual census block 

can only be poorly estimated. Indeed, even the county parameters are not well estimated 

from these data-for example, county 24 (fifth from the left) has one sampled census block 

with much higher radon measurements than the others in the county, containing about l/4 

of the measurements in the county. Are l/4 of the homes in the county really that high, or is 

it even higher, or much lower ? Small-sample noise obviously creates substantial uncertainty 

in the parameters describing individual counties, although this uncertainty can be captured 

with an appropriate statistical model. 

2.2 Sensitivity to measurement error. 

Like all measurements, the alpha-track radon measurements were subject to error. Of par- 

ticular concern for the present study is the effect of background subtraction on the GSD 

estimates by county. Background subtraction is necessary because even unexposed alpha- 

track detectors show some damage that is interpreted as raw counts of radiation exposure. 

To remove this spurious effect, an expected number of background counts is subtracted 

from the observed radon count for the detectors. However, random variation ensures that 

sometimes this expected background level will overestimate the actual background, while at 

other times it will underestimate it. In cases where the actual radon concentration is quite 

low, subtracting an overestimate of the background count can lead to a physically impossi- 

ble (and meaningless) negative radon measurement. Moreover, because of the “regression 

effect”, most of the very low radon measurements (say, less than 0.3 pCi/L household mean 

concentration) are underestimates of the true annual-average concentration. The influence 
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Figure 1. "Flyspeck" plot of observed radon measurements in eight counties 
in Region III (the mid-Atlantic states). Each wide vertical bin contains 
the data from one county. Within each county, a different column contains 
the data from a census block. Each ooint (olotted bv a number indicatina 
the county, using the identifier 
measurement in a home. The y ax 
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of the background subtraction effect diminishes with higher radon concentrations, since the 

effect is of the order of fO.l pCi/L, which becomes a trivial adjustment for measurements 

over 1 or 1.5 pCi/L. 

Still, when estimating the GSDs (by county, or by census block) it is necessary to handle 

the extremely low measurements somehow. Discarding them altogether is statistically in- 

valid, since they really do represent homes with low radon levels. For calculating GMs and 

GSDs of observed data, one can use the maximum likelihood method with an appropriate 

lower limit of 0.2 or 0.3 pCi/L, but the results can still depend on where this lower limit 

is set; additionally, such a method is inconsistent with complete modelling of the radon 

distribution. A better approach would be to include the background subtraction effect in 

the model, but the model would then be vastly more complicated. 

In this work, we apply a slight adjustment to the radon measurements: we replace each 

radon measurement r with r’ = r/2+dm, with D = 0.15 pCi/L. This transformation 

has little effect on values of T above about 0.5 or 0.75 pCi/L (leading to transformed values 

of 0.54 and 0.78 pCi/L, respectively), but yields transformed radon concentrations above 0 

in all cases; moreover, the resulting distribution of transformed radon measurements within 

each region is nearly lognormal. However, this equation is merely a convenient ad hoc 

adjustment, and does not necessarily bring the measurements into line with reality. 

Unfortunately, the results in the present paper are somewhat sensitive to the details of 

this procedure, most notably in regions with many very low household mean radon measure- 

ments: Regions 1, 6, 9, and 10, in all of which 18% or more of the reported measurements 

are less than 0.3 pCi/L. For example, in one of the census blocks in Region 1 (New Eng- 

land), 3 of the 5 reported mean concentrations are below 0.3 pCi/L, although none are 

below 0.1. The sampling GSD of the observed data is 2.08, but the GSD of the transformed 

data (transformed as above) is 1.48, and if D=O.l pCi/L were used as the adjustment rather 

than 0.15 pCi/L, then the GSD of the transformed data would be 1.62. 

In short, given the shortcomings of the data it is difficult to estimate the actual GSDs 

for areas in which many of the radon measurements are very low. 



3 The Model 

3.1 Model definition 

The NRRS data are stratified, and this stratification must be accounted for in estimating 

the county GSDs. After some preliminary investigations, it was clear that a realistic statis- 

tical model of the NRRS measurements must include several components of variation: the 

individual-house measurements are more variable in some census blocks than in others, and 

the census block GMs more variable in some counties than in others. 

Let Yijk be the log measurement in home Ic, in census block j of county i. We will denote 

the vector of {yij} values with y, and likewise will denote the vector of any of the following 

parameters by dropping the subscripts. 

We assume that the house-to-house variance within a census block, a,“j, varies from one 

census block to the next: 

Yijk N N(ei + hj, 6;) 0) 

where 8i is the county effect for county i and &j is the census block effect for block j in 

county i. 

We further assume that the county effects are normally distributed about some grand 

mean p: 

ok - I%, ~~1, (2) 

and that the census block effects are normally distributed about zero, with the variance in 

census block effect itself varying among counties: 

We further assume that the variances are drawn from distributions 

0; - Inv-x2(v,, 0:) 

and 

~3: - Inv-x2(va, S,“), 

with l/v0 and l/v6 given flat (uniform) prior distributions from 0 to infinity. 

(3) 

(4 

(5) 



3.2 Fitting the model 

The model was fit with a combination of alternating conditional sampling (also known as the 

Gibbs Sampler) and Metropolis Monte Carlo methods, as described in Gelman et al. (1995). 

Ignoring the Metropolis steps for the moment, the Gibbs Sampler holds all of the param- 

eters fixed except for one, and draws a candidate value of that parameter from the sampling 

distribution conditional on the values of all of the other parameters (plus the data). Thus it 

is necessary to work out the conditional distribution of each parameter, given the other pa- 

rameters and the data. For notational simplicity, we introduce notation so that y represents 

the entire set of data and parameters in the model: {y}, II, 7, {(T}, {4}, {6}, v,, ~a, as, So, with 

a bracketed symbol following y denoting all of the parameters except the subscripted one. 

The resulting equations for each parameter are (from application of Bayes’s theorem): For 

the county and block effects, 

and 
- e.lrIel + nij(g 1 

2 
- Cj 4ij)/6$ 

l/r2 + Cj 7&j/6$ ’ l/T2 + Cj 7lij/6,2j 
1 

The conditional distributions of ~~j and a$ are scaled-inverse-x2: 

afjl~(b] - Inv-x2(v6 + nij, 
v1560 + ck %jk - (@i + hj)) 

UJ + nij 
(8) 

and 

4 Ml - Inv-x2 (v, + npi, 
uc7"~ + Cj 4ij 

VU + nPi 
1 

where npi is the number of secondary sampling units in county i. 

Finally, the distributions of 60 and 00 are Gamma: 

aoly[ao] +Q r(y + 1, c *) 
i 2 

and 

dojy[deZtao] - r(y + 1, C q), 
ij 2Jij 

(6) 

(7) 

(9) 

(10) 

(11) 

Note that the model defined above does take account of the stratification structure of 

the data, but does not include the over- and under-sampling of some areas. Taking account 
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of the stratification would be necessary if we were analyzing GMs, but investigation (using 

both ordinary and Bayesian regressions) shows no correlation between GSDs and sampling 

weights, although there is a correlation between GMs and sampling weights). Areas that 

were more likely to be sampled have neither higher nor lower GSDs than areas that were 

less likely to be sampled. 

4 Results 

Before discussing the results, we caution the reader that an unusual amount of attention is 

required in order to understand what is being said in this section. Recall that the overall 

goal is not to try to characterize the within-county variability of radon (that is, we are 

not trying to estimate a GSD within a county), rather we are trying to characterize the 

disttibzltion of GSDs, or to put it another way, to characterize the variability of the within- 

county variability. Already this can be confusing, but we are also compelled to discuss the 

uncertainty in the distribution of variabilities. This presents some challenge in terms of 

clarity of exposition. 

Starting from the most understandable level: the results of the analysis do include 

estimates (and uncertainties) of the variances for each of the individual census blocks and 

counties in the NRRS data; however, as these constitute a total of only 125 of the 3000 

U.S. counties, and only eight of the census blocks within each county, these particular 

parameters are not particularly informative. More importantly, the analysis estimates the 

so-called “hyperparameters” describing the overall distribution of variances between census 

blocks and between homes within census blocks. The situation is somewhat analogous to 

using the NRRS data to estimate the distribution of household radon concentrations in 

the U.S.-the geometric mean, geometric standard deviation, etc., can be determined for 

the whole U.S. and for individual regions, but this knowledge does not tell us which U.S. 

counties have elevated or depressed radon levels. Similarly, the present analysis tells us the 

distribution of county GSDs, but does not tell us which GSDs are high and which are low 

(except for those included in the data, of course). 

Table 4 shows central parameter estimates for each region. The Monte Carlo method 

used to estimate the parameters generates many estimates (we used 8000 Monte Carlo steps) 

for each parameter; the table shows the median value of the hyperparameters describing the 

within-county variability, as well as the implied 50% range of county GSD’s. For instance, 
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Table 1: Central estimates of p; 
median median median median 

Region 4 vu 6; 45 
I 0.453 29 0.500 31 
II 0.288 34 0.401 17 
III 0.226 54 0.316 7 
IV 0.187 17 0.405 21 
V 0.219 21 0.361 26 
VI 0.266 22 0.324 16 
VII 0.201 17 0.365 24 
VIII 0.218 47 0.326 12 
IX 0.135 51 0.209 10 
X 0.230 39 0.298 24 

zr 

l- 

ameter values, by region. 
est. percentiles of GSD dist. 
10 25 50 75 90 

2.53 2.61 2.71 2.82 2.95 
2.28 2.32 2.38 2.45 2.58 
2.20 2.23 2.27 2.31 2.36 
2.14 2.17 2.24 2.30 2.40 
2.10 2.14 2.20 2.28 2.35 
2.11 2.17 2.23 2.32 2.45 
2.08 2.14 2.19 2.27 2.37 
2.12 2.14 2.18 2.23 2.27 
1.83 1.86 1.89 1.92 1.95 
2.03 2.07 2.11 2.17 2.21 

for Region I (New England), the median estimate of ai is 0.325, and the median estimate 

of v, is 65. If these estimates are accurate, then (conditional on the model, of course) most 

counties in New England have about the same between-census-block variability-65 degrees 

of freedom is a fairly large number in the scaled inverse-chi-squared distribution. The lower 

estimate of VJ, 31, implies that some census blocks have more between-house variability 

than others do. The combination of the estimated variation in between-house variability 

and the estimated variation in between-block variability yields estimates of the variation 

in the GSDs within this region: as the table indicates, if the central parameter estimates 

are correct then in EPA’s Region I the median GSD is 2.71, and about 50% of GSDs fall 

between 2.61 and 2.82. 

The uniformity of the GSD estimates across the entire U.S. is striking: almost all regions 

have median GSDs in the neighborhood of 2.2, and about half of the counties in the U.S. 

have GSDs between 2.15 and 2.35., with only regions I and IX deviating substantially from 

this pattern. Moreover, the partitioning of this variation into its components (within-block 

and between-block) is very similar across regions. 

4.1 Uncertainties in the distributional parameters 

Table 4 indicates only the central estimates of each parameter and the implied distribution of 

GSDs if these “best guess” values are actually true. But in fact, there is some uncertainty in 

some of the parameters--v, and us in particular. If the true values are actually substantially 

lower than the central estimates, then the distributions of between-block and between-home- 
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within-block variances are wider, leading to more variability in county GSDs. 

The most intuitive way to summarize the uncertainty in the distribution of GSDs is to 

consider how wide or narrow the distribution could be, given the uncertainties of the various 

parameters. For instance, in Region II we estimate that the 90th percentile of county GSDs 

is 2.58, but of course the true 90th percentile could instead be higher or lower than this 

value. What is the range in which we are fairly certain that the 90th percentile actually 

falls? 

The uncertainties vary somewhat by region, but one standard error tends to be of the 

order of f0.08 for the 10th and 25th percentile GSD, f0.09 for the median, ho.10 for the 

75th percentile, and f0.15 for the 90th percentile. 

Actually the posterior distributions are not normal distributions, so that assuming nor- 

mality doesn’t quite give the right error bounds for a region containing 90% of the proba- 

bility. For instance, the 10th percentile in Region II is almost certainly between 2.06 and 

2.35 (the region containing the central 90% of probability), rather than between 2.02 and 

2.37 as would obtain, given the standard error for the 10th percentile of.087 in this region, 

if the posterior distribution were normal. 

As indicated above, although the estimates are reasonably certain for the 10th percentile 

and the median GSD in each region, there is much more uncertainty in just how high the 

highest GSDs in a region could be-the uncertainty in the 90th percentile is really fairly 

large. For instance, we cannot completely rule out the possibility that the most variable 

10% of the counties in Region II could have GSDs over 2.8: the estimated 90th percentile 

in that region is 2.58, but with an uncertainty (one standard error) of f0.15. 

It is worth noting that GSDs of short-term “screening” data tend to be much higher 

than these estimates of true living-area-average GSDs, with observed county GSDs over 

3.0 being fairly common for screening data. It has of course long been recognized that 

screening measurements are more variable than annual-average living-area measurements, 

due to temporal variability, lack of spatial averaging within the house, and so on. Still, 

we are aware of several cases (unpublished) in which state departments of health have 

used screening GSDs in conjunction with estimated county GMs in order to estimate the 

fraction of homes with living-area concentrations over a threshold such as 4 pCi/L. Since 

the screening GSDs tend to be much higher than the actual concentrations, this procedure 

will generally lead to a greatly elevated estimate of the fraction of homes exceeding the 
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reference level. 

4.2 Model validation 

Even before seeing the results, one might suspect several shortcomings in the statistical 

model. For example, it seems reasonable to think that counties that show unusually large 

variation between census block means (that is, counties with large values of ai) might also 

show unusually large variation between homes within census blocks (that is, high values of 

4ij). 
The best way to include such a possibility would be to incorporate such a correlation 

in the model and explicitly estimate its magnitude. We have not done this. Instead, we 

fit the model without such a correlation, and examine the correlation between between- 

and within-block variability in the posterior distributions. This is not quite right, and will 

generally lead to an underestimate of the correlation, but at least we would expect to see 

gross effects if they were present. But in fact, there is no evidence of such an effect. To put 

it another way, any such effect then is small compared to the uncertainties in estimating it, 

since these uncertainties tend to be rather large. For a given county, some census blocks 

can be much more variable than others (the number of degrees of freedom UJ is below 20 in 

most regions), and since only 8 census blocks were monitored in each county if some blocks 

show more internal variability than others it is hard to tell whether the entire county shares 

this feature, or whether one or two blocks with unusually high variability simply happened 

to be sampled (or, for that matter, whether the extra variability is simply due to small- 

sample variation within the block). Thus the correlation between within- and between-block 

variability is swamped by the uncertainties in the various parameters. 

A more serious problem is revealed by posterior predictive checks. In a posterior pre- 

dictive check, the model is fit to the data, and then the parameters of the model are used 

to create simulated data. These simulated data are then compared to the actual data. The 

process seems circular-won’t the simulated data match the actual data perfectly, since the 

simulated data are based on the fit to the actual data? The answer is “no”, because the 

model makes certain assumptions (normality, inverse-chi-squared distribution of variances, 

etc.), and if these assumptions are significantly violated then the simulated data will not 

agree with the observed data. 

Unfortunately, this phenomenon actually occurs, notably for Regions I, II, and XI: 
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when we simulate data from the models, there are some noticeable differences between the 

simulated data and the actual observations. In particular, in these regions the highest 

observed GSDs within individual census blocks are consistently somewhat higher (of the 

order of 10% higher) than expected based on simulating from the model. Note that all of 

these regions have a large fraction of homes with very low radon measurements. Since the 

observed GSDs (and, via the model, the simulated GSDs) are sensitive to details of how 

such low measurements are handled, it seems likely that the poor model fit in these regions 

is due to inadequate modelling of the background subtraction effect. Unfortunately, this 

implies that the GSD parameter estimates in these regions are unreliable. In particular, we 

suspect that the true GSDs in Region I are considerably lower than the model implies, and 

those in Region IX may be substantially higher. 

Model fit is much better in other regions, and we have much more confidence in the 

estimates for the rest of the country. 

5 Conclusions 

In most regions of the U.S., almost all county GSDs or annual-average living-area radon 

concentrations fall between 2.1 and 2.4. Possible exceptions include Region I (New England) 

and Region IX (the Southwest), but a more likely explanation for the deviation of the 

estimates in those regions is a lack of model fit for very low concentration measurements, 

due to background substraction effects. 

Both the within- and between-census-block variations are substantial. Even within a 

given census block, log-space variances tend to be about 0.3 to 0.4, implying coefficients of 

variation of exp(m) = 1.7 to exp(a) = 1.9. Thus, even if a census block GM is exactly 

known, there is a large amount of variation between individual homes in the census block. 

The number of degrees of freedom in the distribution describing the census block GSDs is 

small, suggesting that some census blocks are much more variable than others. This is not 

surprising, since all census blocks contain about the same number of people (of the order 

of 200) and thus vary greatly in spatial extent, and one expects that spatially large census 

blocks will be considerably more variable than spatially small ones, which may encompass 

only a single city block. 
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A Relationship between GM/GSD and “exposure bins”. 

Suppose counties are grouped into “exposure bins” based on geometric mean concentra- 

tion. The individual homes in a given county will have radon concentrations that vary 

substantially about the GM, so although the county is in a particular bin the homes will be 

apportioned among all of the bins. Table 2 shows the fraction of homes in each of six bins, 

as a function of county GM, assuming a county GSD of 2.2. The bins used here are those 

used in Bogen (1992) in fitting a nonlinear dose-response model to lung cancer mortality 

data and radon measurements. 

B Fraction of homes over 4 pCi/L, for various GMs and 
GSDs 

The fraction of homes exceeding the EPA’s recommended action level of 4 pCi/L naturally 

varies as a function of GM and GSD (see table 3). Almost all county GSDs fall between 

2.0 and 2.6, with most closer to the center of this range. The fraction of homes exceeding 

4 pCi/L shows large relative variation (but small absolute variation) as a function of GSD 

when the GM is low; for higher values of GM, the relative variation is fairly small as a 

function of GSD-indeed, when the GM is exactly 4.0 pCi/L, the fraction of homes over 

4 pCi/L is always 0.5, independent of the GSD. For practical purposes, the variation as a 

function of GSD is most important for GMs between 1.5 and 2.0: for counties with GMs 

under 1.5 pCi/L, under 10% of homes exceed 4 pCi/L so these counties would not likely be 

the focus of detailed study, whereas for homes over 2 pCi/L, over 20% of homes exceed 4 

pCi/L so these counties are “at risk” no matter what the GSD. Only in the intermediate 

range can the GSD be the deciding factor in whether the county merits special attention 

based on the fraction of homes over 4 pCi/L. 

14 



Table 2: Fraction of homes in each exposure bin, as a function of county GM, assuming a 
county GSD of 2.2 and using the same bins as Bogen (1992). Horizontal lines separate GM 
regions in which different bins have a plurality of the homes. Note that for this GSD and 
these bins, the fifth bin never has a plurality. The GM increments by 0.2 for GM values 
above 2.4 pCi/L. 

GM < 0.394 0.394-0.787 0.787-1.38 1.38-2.17 2.17-3.15 > 3.15 
pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L 

0.1 0.959 0.037 0.004 0.000 0.000 0.000 
0.2 0.805 0.154 0.034 0.006 0.001 0.000 
0.3 0.635 0.254 0.084 0.020 0.005 0.001 
0.4 0.492 0.312 0.137 0.042 0.012 0.004 
0.5 0.381 0.336 0.184 0.068 0.022 0.010 
0.6 0.297 0.338 0.220 0.094 0.034 0.018 
0.7 0.233 0.326 0.246 0.119 0.047 0.028 
0.8 0.185 0.307 0.264 0.142 0.062 0.041 
0.9 0.147 0.285 0.274 0.162 0.076 0.056 
1.0 0.119 0.262 0.278 0.179 0.090 0.073 
1.1 0.096 0.239 0.278 0.192 0.103 0.091 
1.2 0.079 0.217 0.274 0.203 0.116 0.110 
1.3 0.065 0.197 0.268 0.212 0.127 0.131 
1.4 0.054 0.179 0.260 0.218 0.137 0.152 
1.5 0.045 0.162 0.251 0.222 0.146 0.173 
1.6 0.038 0.146 0.242 0.225 0.154 0.195 
1.7 0.032 0.132 0.231 0.226 0.161 0.217 
1.8 0.027 0.120 0.221 0.226 0.167 0.239 
1.9 0.023 0.109 0.211 0.224 0.172 0.261 
2.0 0.020 0.099 0.201 0.222 0.177 0.282 
2.1 0.017 0.090 0.191 0.219 0.180 0.304 
2.2 0.015 0.082 0.181 0.216 0.182 0.324 
2.3 0.013 0.074 0.172 0.212 0.184 0.345 
2.4 0.011 0.068 0.163 0.208 0.186 0.365 
2.6 0.008 0.056 0.146 0.198 0.187 0.404 
2.8 0.006 0.047 0.131 0.188 0.186 0.441 
3.0 0.005 0.040 0.118 0.178 0.184 0.475 
3.2 0.004 0.034 0.105 0.168 0.181 0.508 
3.4 0.003 0.029 0.095 0.158 0.177 0.539. 
3.6 0.003 0.024 0.085 0.148 0.172 0.567 
3.8 0.002 0.021 0.077 0.139 0.167 0.594 
4.0 0.002 0.018 0.069 0.130 0.162 0.619 
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Table 3: Fraction of homes exceeding 4 pCi/L, for various values of GM and GSD 
GSD 

2.0 2.2 2.4 2.6 
0.5 0.001 0.004 0.009 0.015 
1.0 0.023 0.039 0.057 0.073 
1.5 0.079 0.107 0.131 0.152 

GM 2.0 0.159 0.190 0.214 0.234 
2.5 0.249 0.276 0.296 0.311 
3.0 0.339 0.358 0.371 0.382 
3.5 0.424 0.433 0.439 0.444 

16 



C Computer code for estimating the parameters 

The following is computer code, in the “$7 programming language, that was used to cal- 

culate the parameter estimates in this paper. Portions of the code will probably be under- 

standable to anyone with programming experience, but some knowledge of S is needed to 

really make sense of it. One important note is that S is vector-oriented, so that for instance 

“phi” is an entire vector of values, and “ybar” is a vector of values; “ybar - phi” is a vector 

containing the componentwise difference between ybar and phi. 

phil2.gibbs <- function(y,y.grl,y.gr2,nulO,nu2O,vlO, ~20, nrep) ( 

# gibbs sampler for means and variances that vary among groups 

# nul0, ~10: degrees of freedom and central estimate of variance 

# for census block effects (assumed inv-chisq distrib) 

# nu20, ~20: same as above, for within-block variances 

# note: EACH subgroup defined by y.gr2 must have a unique entry in 

# y.gr2...e.g., if y.grl <- c(l,1,1,1,2,2,2,2), then 

# y.gr2 <- c(l,l,2,2,3,3,4,4), NOT y.gr2 <- ~(1,1,2,2,1,1,2,2) 

grllist <- unique(y.grl) 

nthetas <- length(grllist) 

# within each group i, count number of subgroups 

nphi <- rep(O,nthetas) 

for (i in 1:nthetas) ( 

nphiCi.1 <- length(unique(y.gr2[y.grl==grllist~i~l)) 

1 
nphis <- sumcnphi) 

print(c(nthetas, nphis)) 

# calculate observed means, and initial variance estimates 

theta <- rep(O,nthetas) 

ybar <- rep(O,nphis) 

v <- rep(l,nphis) 
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# 

n <- rep(l,nphis) 

gr2 <- rep(O,nphis) 

whichct <- rep(O,nphis) 

ij <- 0 

for (i in 1:nthetas) ( 

gr2list <- unique(y.gr2Cy.grl==grllistCill) 

asumi <- 0 

for(j in 1:nphiCil) { 

ij <- ij+l 

okij <- y.grl==grllist[i] & y.gr2 == gr2listCjl 

n[ijl <- sum(okij> 

ybarCij1 <- mean(y[okij]) 

vCij1 <- var(yCokij1) 

whichct[ij] <- i 

gr2Ci jl <- gr2list Cjl 
print(c(ij,nCijl,vCijl)) 

asumi <- asumi + ybar[ij] 

asumi <- asumi + ybar[ij] 

3 
thetaCi1 <- asumi/nphi[i] 

3 
v[is.na(v)l <- mean(vC!is.na(v)l) 

v[v<0.00011 <- mean(v) 

print(c("mean, var of vCijl",mean(v),var(v))) 

igrp <- match(y.grl,unique(y.grl)) 

isubgrp <- match(y.gr2,gr2) 

reorder <- match(gr2,sort(unique(y.gr2))) 

printcigrp) 

printcisubgrp) 
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print(c("ybarCll",ybar[ll)) 

sigma2 <- rep(vlO,nthetas) 

phi <- rep(O,nphis) 

mu <- mean(ybar) 

tau <- varcybar) 

aout <- matrix(O,nrow=nrep,ncol=(2*nthetas+2*nphis+6)) 

for (jrep in 1:nrep) -C 

# subgroup effects, given all other parameters, and 

# subgroup variances, given all other parameters 

aprec <- l/sigma2[whichct] + n/v 

amean <- (n*(ybar-thetaCwhichctl)/v)/aprec 

adf <- nu20 + n 

phi <- rnorm(n=nphis,mean=amean,sd=sqrt(l/aprec)) 

#print(c(mean(phi),var(phi))) 

resid <- y - (theta[igrp]+phi[isubgrp]) 

vv <- unlist(tapply(resid-2,list(y.gr2),sum)) 

#vv is in order by the value of y.gr2, which isn't what we want--- 

#we need to retain the same order as y.gr2, so if y.gr2 is unsorted, 

#vv is unsorted in the same way. So put it back. 

vv <- vv[reorder] 

aterm <- (nu20*v20+vv)/(nu20+n) 

x <- rchisq(nphis,adf) 

v <- adf*aterm/x 
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# group effects, given all other parameters 

# (given phi and v, each y is like an observation of theta) 

scalres <- unlist(tapply(n*(yba-phi)/v,list(whichct),sum)) 

precsum <- unlist(tapply(n/v,list(whichct),sum)) 

aprec <- l/tau^2 + precsum 

amean <- (mu/tau*2 + scalres)/aprec 

theta <- rnorm(n=nthetas,mean=amean,sd=sqrt(l/aprec)) 

# now variance of subgroup effects within each group 

# ( phi " NCO, sigma-i-2) > 

adf <- nul0 + nphi 

vv <- unlist(tapply(phi^2,list(whichct),sum)) 

aterm <- (nulO*vlO + vv)/(nulO + nphi) 

x <- rchisq(nthetas,adf) 

sigma2 <- adf * aterm/x 

# hyperparameters 

# VlO 

# sigma2 - Inv-chisqcnu, s-2) --> s^2lsigma,nu is gamma-distributed 

# (if noninformative prior): 

beta <- nulO*sum(l/sigma2)/2 

alpha <- nthetas*nul0/2 + 1 

v10 <- rganuna(l,shape=alpha)/beta 

# 

# similarly for v20 

beta <- nu20*sum(l/v)/2 

alpha <- nphis*nu20/2 + 1 

v20 <- rganuna(l,shape=alpha)/beta 

# 

# Now a metropolis step for the nul0 values: 

nulOp <- exp(log(nul0) + rnorm(n=l,mean=O,sd=O.2)) 

corterm <- 0 

# corterm <- log(nulOp) - log(nul0) 
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term1 <- nthetas*(nulOp*log(nulOp/2)-nulO*log(nulO/2))/2 

term2 <- nthetas*(nulOp-nulO)*log(vlO)/2 

term3 <- (nulO-nulOp)*sum(log(sigma2))/2 

term4 <- (nulO-nulOp)*vlO*sum(l/sigma2)/2 

term5 <- nthetas*log(gamma(nulO/2)/gamma(nulOp/2)) 

lgratio <- terml+term2+term3+term4+term5+corterm 

if(lgrati0 > 0) C 

nul0 <- nul0p 

# print(round(c(terml,term2,term3,term4,term5,lgratio 

3 else ( 

if (runif(n=l,min=O,max=l~ < exp(lgrati0)) ( 

nul0 <- nul0p 

3 

3 

# metropolis step for nu20 values: 

nu20p <- exp(log(nu20) + rnorm(n=l, mean=O, sd=0.2)) 

corterm <- 0 

# corterm <- log(nu20p) - log(nu20) 

term1 <- nphis*(nu20p*log(nu2Op/2)-nu2O*log(nu20/2~~/2 

term2 <- nphis*(nu20p-nu20)*1og(v20)/2 

term3 <- (nu20-nu20p)*sum(log(v))/2 

term4 <- (nu20-nu20p)*v20*sum(l/v)/2 

term5 <- nphis*log(gamma(nu20/2)/gamma(nu2Op/2)) 

lgratio <- terml+term2+term3+term4+term5+ corterm 

if(lgrati0 > 0) ( 

nu20 <- nu20p 

3 else C 

if (runif(n=l,min=O,max=l~ < exp(lgrati0)) ( 

nu20 <- nu20p 

‘1) 
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3 
3 
# now mu, tau 

mu <- rnorm(n=l, mean=mean(theta),sd=sqrt(tau/nthetas)) 

tau2 <- sum((mu-theta)-2)/nthetas 

tau <- sqrt(nthetas*tau2 / rchisq(l,nthetas) > 

print(round(c(jrep,mu,tau^2,nulO,vlO,nu2O,v20~,2~~ 

# note: we're returning tau (an s.d.), but also v10 and v20 (vars) 

aout[jrep,] <- c(theta,sigma2,phi,v,mu,tau,nulO,vlO,nu2O,v20) 

) # end jrep loop 

return(aout) 

3 # end function 
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